Final Pre-Design Report - Volume II

25th Avenue NE Flood Reduction Project

City of Shoreline

In association with BergerABAM, Herrera, Perteet and Terracon

Terracon

March 2018

25th Avenue NE Flood Reduction Project City of Shoreline

Table of Contents – Volume II

Final Pre-Design Report – Volume II

- H Utility Potholes
- I Geotechnical Investigations
 - I.1 Draft Geotechnical Report
 - I.2 Groundwater Monitoring Data
 - I.3 Supplemental Geotechnical Investigations at North Maintenance Facility Site
- J Critical Areas Report
- K WSDOT Coordination
 - K.1 Gabion Wall Report
 - K.2 Final Design
 - K.3 Fish Exclusion Report
 - K.4 Input on Replacement Culvert and Stream Improvements
 - K.5 City Cost Estimate of Ballinger Way NE Gabion Wall Replacement
- L Preliminary Alternative Screening
- M Hydraulic Model Output
 - M.1 Existing Conditions
 - M.2 Alternative 1
 - M.3 Alternative 6
- N Constructability Review
- O Storm Pipe (CCTV) Inspection Reports
- P Aldercrest Annex Site Assessment
- Q Ballinger Creek Flow Monitoring Data

Appendix H Utility Potholes

DATE 6-22-16

Applied Professional Services Inc.

	Subsurface Composition/Comments	Kack 7	Rocir y		Racky + Wit	Rocky Rocky + Wit	Rocky Rocky	Rocky t coase Soict Way	Rack Sond + wit	Rochy	Rocky Raky/Sand/Wet	
	Concrete Thickness)	1		1	1.1	1 1	1	l	I	\$	
1	Asphalt Thickness	1	5 D	t	1	111))	6 "	1	S '	1	
PROJECT. Sho	Pipe Material	5+0+1	54001	a Sher	54 + + 1	PUC	PUC	copel	PUC	DVC	pu c Sheet	
	Pipe/Conduit size inches	00	66 *	role dat	6 %	2)×4°	(2) X 4 "	18	~ 2X (1)	、	cz) x 4 %	
	Depth to Bot of utit. In inches	45.5	+ +01	T+S+ 1	53'	28°5°	35%	5138"	5.9 %	37 :	40.5°	
	Depth to top of util, in inches	37.5"	30 *	S & ¢	" L H	76°. 34.5°. 35.5°	330,	:15	25 %	30 "	36,	
67149	T arget Utility	H20	2 H	J.O.	ngter	Con	COM	Water	Com 1 PUR	COM	COM	
TOR# CLIFNT POC	Porthole # (.ore #	-	2	M	7	e viv	14	00	0	0	II IIA	
	Pothole Late	6-22-16	6-22-16	3-22-16	5-23-16	6-23-16 6-23-16 5-23-16	6-23-16	91-22-9	6-22-16	6-22-16	5-22.16	

	DR		TEST HOLE	E DATA S	anna anna Mara anna	
			4149		6-	22-16
						1
		ç - ⊖ - d - ⁻ - 2-	7"		unidy 1/5∂.,	Water
Overlay layers:	utito Size 8"	ngn∋s	tilty Material Stre	<i>el</i>	jas kas Sisti Dond	Racky
asphalt 7"				0 x ~ 4		
	Pipe Direction I singl	a phail i i i	olof ucen from grada _	31.5	70193	
Dict	= 4 // 1 2 3	30	dom struckty from grad-	45.5	rones	
	STI & NE	>				
	55 & N/N	Γ1	dan ar Suructure i neces	33ry.		
Additional utilities found ir	n same location:		E 3 VV N 3 3	SW & NE	SE&M/V	ng tine si waxaya ng nggi bitan
Test noie#						
Utility Type	Too Bot:	Size:Ut	Material.	Overlay Thick:_		
Utility Configuration: Fo Vacuum Crew: Lead: Rob Helper: Kyl1 Notes:	oring NE Water B"Stern	Nood Foncp past 7'9" 55'9 Stag Herp at Kod Sighn 4x4 NooD Post Bi	ALLINGER WA	ANE 195 TH ST		

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline.

Be sure to include a description of each permanent marker

	DR
	12

TEST HOLE DATA SHEET

4149 6-22-16

	- 0.0.1.0.4	- 2	2 - 5 - 3 -	The De 1965 6	<mark>5 -</mark> 032	5)	Januar avez <u>Water</u>
Overlay layers:	Junita S	zə <u>66</u> *	00183	iutility Mate	ste	el	Soff Dond Rock y
asphalt 6"	2.09	Sirection of r	sla pra	Too of voice f	rom gradie	38 ~	indres.
Dict				Bottom of util	ny ^{ar} sim gradia	104 =	CCC+35
~ ~ , ^		571 & ME SE \$ N/M		mam of Struc	xura finacas	3877	nones.
Additional utilities found	in same lo	ation:		E 3, 44	N & 3	SIN & NE	SE & N'/V
Test hole#							
Utility Type	Too	Bott	Size	Ut Materiai.		Overlay Thick:_	

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline

Be sure to include a description of each permanent marker

TEST HOLE DATA SHEET

4149 6-22-16

	ARTICLES CONTRACTOR PLUS CONTRACTOR	ARE CAN AND RESISTING AND	Did	not pothole	see no	otes	1.48-953674
	Poendies	3	2 vena v	то ригезят	° 17 9 9	F.O .	
Dverlay layers:	annaise	IƏ	00193	utit. Materia		gas Haner ers. Bibli Condi <u></u>	
	5.04	Direction I bir	sla pria	Too of uplin, ind migrade	ž	FC798	
		= 4 // 1 & S 2 4 / 4 - 5		Bottom of Levey from g	1809	00063	
		577 x 12 52 x 1/4	the state of the	in din of Sinucture fine	bassary	rc/e3.	
dditional utilities foun	d in same loca	ation:		는 것 YY Y 것 :	S 377 & NE	SE & NOV	1246-022411
estincie#							
tility Type	Top	Bott	S Z 9	Ut Material.	Oviartay Thick:		

Utility Configuration:	
Vacuum Crew:	
Lead: Rob	
Helper: Kylp	
Notes:	
Call Locates. Found a	
66" Water pipe only.	
Located F.O. in Sidewalk	
but City of shoreline	
branck sidebook popel.	
Dreach socially putt	

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline

Be sure to include a description of each permanent marker

Sketch to include street name(s), North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker

Sketch to include street name(s), North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker

		TES	ST HOLE	DATA S	HEET	
	3		APS Jo	# <u>4149</u>		Date: 6 - 23 - 16
Applied						
Professional						
Services, Inc.	Pothole#: 5A	Overlay Th	nickness_	inche	es.	Utility type: <u>Com</u> (gas,water, etc.)
Overlay layers:	Utility Size:(2) x 4 ~	inches	Utility M	aterial: P.V	. C.	Soil Cond. Racky
e ,	Pipe Direction (circle	e one) Top of utility from grade: 34.5 "			_inches.	
DIRT	N & S SW & NE	Bottom of utility from grade: 38.5 *				inches.
	SE & NW		Width of S	Structure if necess	sary:	inches.
Additional utilities found in	n same location:		E & W	N & S	SW & NE	SE & NW
Test hole#						
Utility Type:	Top: Bot:	Size:	Ut Mater	ial:	Overlay Thick:_	
	Part Mennel Contract on Change State of Contract of Contract					
Utility Configuration: F Vacuum Crew: Lead: Rob Helper: Kyl4 Notes:	com Com C2)x4" PUC	address # 1954	7	25 th AVE NE	2007	X X X X X X X X X X X X X X X X X X X

4

Sketch to include street name(s), North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker

Sketch to include street name(s), North arrow, distance to (3) permanent markers & distance to fogline or centerline.

Be sure to include a description of each permanent marker

Sketch to include street name(s), North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker

	ZS
	1 1000255939300000

TESTHOLE DATA SHEET

4149 6-22-16

to main.

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline

Be sure to include a description of each permanent marker

TESTHOLE DATA SHEET

4149 6-22-16

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker.

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline

Be sure to include a description of each permanent marker

and a start of the	
APR	TESTHOLE DATA SHEET
	4149 6-22-16
Postore#	Diverte l'Indicheas <u>4</u> nones utilità dice <u>COM</u>
Overlay layers: Utility Size (2) × 4	Coones Utility Materia PVC Spill Cond Rocky
asphalt 1 4"	+ Sand
Pipe Direction single	noneu Topich valor. Indim grada <u>36</u> noneu
L Dict , NAS	Bottom of upikty from grade nones.
SWANE SEANT	Wildth of Biructure if necessary" nones.
Additional utilities found in same location:	E 3 W N 3 S SW 3 NE SE 3 NW
Test hole#A	Did not find
Utility Type Side Sewer Top Bots	Size: Ut Materiai Overlay Thiok:
Utility Configuration: Factors NW <u>Top: 36"</u> Top: 36-5" 00_2×4" PUC	$ \begin{array}{c} A \\ N \\ N \\ I \end{array} $
Utility Configuration: Factors NW Top: 36" Top: 36-5" OO_2x4" PUC Vacuum Craw:	A NE 195PL N I N
Utility Configuration: Factors NW Top: 36" Top: 36-5" OO_Zx4" PUC Vacuum Crow: Lead: Rob	A NE 195PL N I I I I I I I I I I I I I I I I I I I
Utility Configuration: Factors NW Top: 36" Top: 36-5" OO 2x4" PUC Vacuum Crow: Lead: Rab Helper: Kyle	A NE 195PL N INN YA Storm Storm Sasur LID
Utility Configuration: Factors NW Top: 36" Top: 36-5" OO_Zx4" PUC Vacuum Crow: Lead: Rob Helper: Kyle Notes:	NE 195PL N INE 195PL Storm Satch Basiv CID 0 H
Utility Configuration: Factors NW Top: 36" Top: 36-5" OO 2x4" PUC Vacuum Crow: Lead: Rob Helper: Kyle Notes: Pothole #11A Sewer	A NE 195 PL N JN VE 195 PL JN JN VE Storm Sasur LID 18'7"
Utility Ophilguration: Factors NW Top: 36" Top: 36-5" OO_2x4" PUC Vacuum Crow: Load: Rob Helper: Kyle Notos: Pothole #11A Sewer Dug down to 5'6" deep	N NE 195 PL N NE 195 PL N Sion Sion Source Based CID 18'7" 18'7"
Utility Configuration: Facing NW Top: 36" Top: 36-5" OO ZX4" PUC Vacuum Crow: Lead: Rab Helper: Kyle Notes: Pothole #11A Sewer Dug down to 5'6" deep and ran into ground	A NE 195 PL N I NE 195 PL Storm St
Utility Configuration: Facing NW Top: 36" Top: 36-5" OO_ZX4" PUC Vacuum Crow: Lead: Rob Helper: Kyle Notes: Pothole #11A Sewer Dug down to 5'6" deep and ran into ground Water - Could not vac	A N N N N N N N N N N N N N
Utility Configuration: Facing NW Top: 36" Top: 36-5" OO_2x4" PUC Vacuum Crow: Lead: Rob Helper: Kyle Notes: Pothole #11A Sewer Dug down to 5'6" deep and ran into ground Water - Could not vac Water out Fast enough.	A NE 195PL N I Storm Sarch Bassu CID 18:7" 18:7" 18:7" 18:7" 18:7" 18:7" 18:7" 18:7" 18:7" 19:00 19:00 19:00 10:
Utility Donitiguration: Facing NW Top: 36" Top: 36-5" OO_2x4" PUC Vacuum Crow: Lead: Rob Helper: Kyle Notes: Pothole #11A / Sewer Dug down to 5'6" deep and ran into ground Water out fast enough. probed to 11' deep by	$\frac{4}{N} = 195PL$ $\frac{4}{N} = 195PL$ $\frac{500M}{500M}$ $\frac{500M}{500M}$ $\frac{500M}{500M}$ $\frac{500M}{500M}$ $\frac{500M}{500M}$ $\frac{500M}{500M}$ $\frac{1877}{1877}$ $\frac{1877}{7}$
Utility Opnitiguration: Facing NW <u>Top: 36</u> " Top: 36-5" <u>OO 2×4" PUC</u> Vacuum Crow: Lead: Rab Helper: Kyle Notes: Pothole #11A Sewer Dug down to 5'6" deep and ran into ground Water out fast enough. probed to 11" deep by about z' wide but	A NE 195 PL N I Storm Satch Bassu CID 18'7'' 18'7'' 18'7'' 34'4'' 34'4''' 34'4''' 34'4''' 18'7''' 18'7''' 18'7'''''''''''''''''''''''''''''''''''

Sketch to include street name(s). North arrow, distance to (3) permanent markers & distance to fogline or centerline. Be sure to include a description of each permanent marker.

City of Shoreline 25th Avenue SE Conveyance Improvements Potholes.

Appendix I Geotechnical Investigations

Appendix I.1 Draft Geotechnical Report

Note that the preparation of the draft geotechnical investigation report describes the project site conditions in general as well as providing input on the most of the initial seven potential alternatives. In particular 6 and 7 were not included at the time. It is also noted that the designations of the alternatives changed from an alphabetic system to numeric system, and there has since been some modifications to the location and extent of alternatives. The original scope of the geotechnical investigations was to prepare draft report that covered the range of geotechnical issues that may inform alternative development. A final geotechnical report will be prepared in later phases of the project development and focus on the preferred alternative once it is selected.

The following provide a simple cross reference of the alternative designations within the geotechnical report and the updated alternative numbering.

Geotechnical Report	Updated Alternative Number
Option A (Maximum Feasibility)	Alternatives 1 and 2
Option B (Maximum Habitat)	Alternative 3 (NMF or School Annex)
Option C (Lowest Cost)	Alternative 4
Option D (High Flow Bypass)	Alternative 5

Draft Preliminary Geotechnical Engineering Report

25th Avenue NE Flood Reduction Shoreline, Washington

September 6, 2016 Terracon Project No. 81165045

Prepared for:

Louis Berger, Inc. Seattle, Washington

Prepared by: Terracon Consultants, Inc. Mountlake Terrace, Washington

lerracon

September 6, 2016

Louis Berger, Inc. 520 Pike Street, Suite 1005 Seattle, WA 98101

- Attn: Mr. Mike Giseburt, P.E. P: [206] 453-1549 E: <u>mgiseburt@louisberger.com</u>
- Re: Draft Preliminary Geotechnical Engineering Report 25th Avenue NE Flood Reduction Shoreline, Washington Terracon Project Number: 81165045

Dear Mr. Giseburt:

Terracon Consultants, Inc. (Terracon) has completed the Phase I preliminary geotechnical engineering services for the above referenced project. This study was performed in general accordance with our proposal number P81165045 dated March 2, 2016 and a Services Task Order between Louis Berger, Inc. (Louis Berger) and Terracon dated May 16, 2016. This report presents the findings of the subsurface and hydrologic exploration and provides preliminary geotechnical recommendations concerning the alternatives under consideration for proposed stormwater improvements. Once the approach and configuration of the proposed stormwater improvements is selected, it is intended that Terracon develop a geotechnical design report to address specific design and construction considerations related to the selected alternative.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, **Terracon Consultants, Inc.**

Tori Hesedahl, E.I.T. Geotechnical Engineer Dennis R. Stettler, P.E. Senior Consultant

Terracon Consultants, Inc.21905 64th Avenue, Suite 100Mountlake Terrace, Washington 98043P[425] 771 3304F[425] 771 3549terracon.com

		Page)
EXEC	JTIVE S		i
1.0	INTRO		 -
2.0	PROJE		
	2.1	Project Description	l
	2.2	Site Location and Description	3
3.0	SUBSI	IRFACE CONDITIONS	3
	3.1	Geology	3
	3.2	Typical Profile	ł
	3.3	Groundwater	5
4.0	PRELI	MINARY RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION	5
	4.1	Geotechnical Considerations	3
		4.1.1 Undocumented Fill6	3
		4.1.2 Groundwater6	3
		4.1.3 Existing Utilities6	3
		4.1.4 Steep Slope North of NE 195 th Street6	3
		4.1.5 Existing Retaining Wall South of NE 195 th Street	7
		4.1.6 Liquefaction7	7
	4.2	Earthwork	3
		4.2.1 Site Preparation	3
		4.2.2 Reuse of Site Soils	3
	4.3	Dewatering)
	4.4	Box Culverts10)
	4.5	Pipe Culverts10)
	4.6	Support of Tolt Pipeline10)
	4.7	Open Channel Slopes10)
	4.8	Channel Wall Alternatives11	l
		4.8.1 Soldier Pile and Lagging11	l
		4.8.2 Gravity12	2
		4.8.3 Sheet Piles12	2
		4.8.4 Rockery12	2
	4.9	Recommendations for Final Design12	2
5.0	GENE	RAL COMMENTS	3

APPENDIX A – FIELD EXPLORATION

Exhibit A-1	Site Location
Exhibit A-2	Site and Exploration Plan
Exhibit A-3	Field Exploration Description

Exhibit A-4 to A-7	Boring Logs B-1 to B-4
Exhibit A-8	Well Log GB1/MW-4
Exhibit A-9	Boring Log GB6
Exhibit A-10 to A-11	Test Pit Log TP4 to TP5
Exhibit A-12 to A-14	Well Logs B-1 to B-3
Exhibit A-15	Boring Log MW1

APPENDIX B – LABORATORY TESTING

Exhibit B-1	Laboratory Testing Description
Exhibit B-2	Grain Size Distribution
Exhibit B-3	Analytical Testing

APPENDIX C – SUPPORTING DOCUMENTS

Exhibit C-1	General Notes
Exhibit C-2	Unified Soil Classification System

APPENDIX D – SLUG TESTING

Exhibit D-1	Slug Testing Description
Exhibit D-2	Hydraulic Conductivity Summary
Exhibit D-3	Slug Test Plots

APPENDIX E – BORINGS BY OTHERS

Exhibit E-1	WSDOT Boring and Test Pit Legend
Exhibit E-2	Boring Log H-1-16
Exhibit E-3	Boring Log HWA-MW-7

EXECUTIVE SUMMARY

Terracon has performed preliminary geotechnical engineering services to support the evaluation and selection of preferred alternatives for the 25th Avenue NE Flood Reduction project in Shoreline, Washington. As part of these services we conducted geotechnical explorations which consisted of four borings to a maximum depth below existing site grade (bgs) of about 31 ½ feet. We also searched for existing subsurface information in publicly available resources and our own records.

Based on the information obtained from our subsurface exploration and research of existing information, construction of the proposed project alternatives appears to be geotechnically feasible. The following geotechnical considerations were identified:

- Underlying soil conditions typically consist of transitional beds of medium dense to very dense Sand and Gravel with varying fines (silt and clay) content. Soil interpreted to be alluvium consisting of very loose silty Sand extends to a depth of up to about 13 feet below ground surface in most of the borings. Fill overlies the alluvium or transitional beds and typically consists of very loose to medium dense silty Sand with gravel. The fill disclosed in the four borings advanced for this project extended to a depth of about 3.5 to 5 feet below the ground surface, but could be variable along the alignment based on past grading activities and the location of utility trench backfill.
- Oil and diesel range hydrocarbons were detected between 3 and 3 ¼ feet in boring B-4 and in some of the explorations completed on the adjacent Shoreline North Maintenance Facility site as a part of a separate City of Shoreline project. While the sample tested from boring B-4 was below Washington State Model Toxics Control Act (MTCA) cleanup levels, excavation could uncover areas with higher concentrations.
- Groundwater was observed within 2 feet below ground surface (bgs) in most of our explorations with depth to groundwater being near 7 feet bgs at higher ground elevations near NE 195th Street . Shallow groundwater will likely present constructability issues related to trenching for culvert installation and for daylight stream sections.
- Groundwater samples from two of the monitoring wells installed as a part of this project were analyzed for total petroleum hydrocarbons, volatile organic compounds, and metals. All of the test results were below the method reporting limits except for arsenic which was detected at a level slightly above the MTCA cleanup level. The arsenic finding was consistent with test results often indicative of background levels of arsenic in the Puget Sound area.
- A number of buried utilities run along the existing culvert on the east side of 25th Avenue NE. In the consideration of alternatives the design team appears to have largely avoided conflict

with these utilities by either running the alignment down the west side of 25th Avenue NE, or into the school district property on the east side of 25th Avenue NE.

- Replacing the culvert crossing at NE 195th Street will be complicated by a 66-inch water transmission pipe that runs along the south side of NE 195th Street. The pipeline will likely need to be temporarily underpinned and supported across the culvert excavation by a pile-supported frame.
- Stream channel regrading is proposed to accommodate the new stream gradient which is necessitated, in part, by clearance below the existing 66-inch water main. Proposed lowering of the stream channel would result in subvertical to vertical banks of up to about 4 feet of exposed height (1 foot existing sediment buildup plus up to 3 feet deepening) at the toe of steep slopes (such as north of NE 195th Street and at the toe of a distressed gabion basket retaining wall south of NE 195th Street. New stream channel walls will likely be required and need to be designed to support surcharge from the slope and roadway above, and for scour.
- Open channel stream bank slopes should be sloped no steeper than 2H:1V and will require protection from erosion.
- Potentially liquefieable soils were identified in borings B-4 and H-1-16.
- Close monitoring of the construction operations discussed herein will be critical in achieving the project design. We therefore recommend that the Terracon be retained to monitor this portion of the work.

This summary should be used in conjunction with the entire report for preliminary design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

DRAFT PRELIMINARY GEOTECHNICAL ENGINEERING REPORT 25th Avenue NE Flood Reduction Shoreline, Washington Terracon Project No. 81165045 September 6, 2016

1.0 INTRODUCTION

Terracon Consultants, Inc. (Terracon) is pleased to present the results of our preliminary geotechnical engineering services for the proposed stormwater conveyance improvements. The project alignment runs along 25th Avenue NE between Brugger's Bog Park in Shoreline, then crosses beneath NE 195th Street and follows along the south side of Ballinger Way for a few hundred feet within the city of Lake Forest Park. Logs of the site explorations along with a site location map and exploration plan are included in Appendix A of this report.

The purpose of these services is to provide subsurface information and preliminary geotechnical engineering recommendations to support evaluation and selection of project alternatives. Geotechnical conditions were considered relative to:

subsurface soil conditions

groundwater conditions

- earthwork
- existing retaining walls

- existing slopes
- support of stormwater conveyance pipeline

This information and preliminary recommendations are intended to support preliminary design and alternative selection for the project. Once the project alignment, preliminary grading concepts, and channel/culvert configuration are finalized, this preliminary report should be revised and updated to address the specific details of the planned stormwater conveyance improvements.

2.0 PROJECT INFORMATION

2.1 Project Description

Significant flooding is a recurrent issue along Ballinger Creek from approximately the City of Shoreline corporate limits at NE 195th Street, north to the crossing with 25th Avenue NE, and into Brugger's Bog Park, including portions of the proposed Shoreline North Maintenance Facility (SNMF). This problem was previously studied and the basin plan concluded that the approximate 550-foot-long pipe system crossing 25th Avenue NE and extending south has inadequate capacity. In addition, it concluded that the 74-foot-long culvert crossing of NE 195th Street, located

just downstream of the 25th Avenue NE pipe system, is also undersized, and contributes to the upstream flooding.

The objective of this project is to perform preliminary design, permitting and final design for the replacements of both the 25th Avenue NE pipe system and the NE 195th Street culvert in order to improve the level of flood protection in this area. The schedule for the project is important because the City is in the process of redeveloping the SNMF and the two projects need to be coordinated.

Four alternative designs for the stretch between Brugger's Bog Park and NE 195th Street are proposed for further study in meeting summary minutes from the August 2, 2016 meeting between design team members from Herrera, Louis Berger, and the City of Shoreline.

- Option A Maximum Feasibility Daylight the stream within the right-of-way on the west side of 25th Avenue NE along the SNMF frontage, then
 - Culvert across 25th at an angle, daylight between south side of 195th Place
 NE and driveway to 2518 NE 195th Street, new culvert under driveway, or
 - One long culvert under 25th Avenue NE with outlet at existing location south of driveway to 2518 NE 195th Street
- Option B Maximum Habitat/Fish Passage Benefit Daylight creek on east side of 25th Avenue NE on Aldercrest Annex property and within 25th Avenue NE ROW south of 195th Place, use fish passable culverts at all roadway/driveway crossings
- Option C Lowest Cost Closed conduit under west side of 25th Avenue NE, cross near existing open channel south of driveway to 2518 NE 195th Street
- Option D High Flow Bypass Replacement Replace existing high flow bypass and move outlet to downstream side of NE 195th Street culvert.

Alternative designs to carry the stream under NE 195th Street were also identified in the meeting minutes.

- Fish Passable Culvert
 - Standard dimension box culvert. or
 - Minimum thickness/clearance culvert
- Maintain existing culvert for normal flow and rely on High Flow Bypass Replacement option above to carry storm event flows under NE 195th Street.

Should any of the above information be inconsistent with the proposed project, please let us know so we may make any necessary modifications to this report.

2.2 Site Location and Description

The project is located in the cities of Shoreline and Lake Forest Park, Washington. The alignment under consideration begins as an open channel in Brugger's Bog Park. At the southeast corner of the park the stream enters a pair of parallel culverts which continue south along either side of 25th Avenue NE. The outfall of the culverts is on the east side of 25th Avenue NE, approximately opposite the southeast corner of the Shoreline North Maintenance Facility. An open channel continues south from the outfall along the east side of 25th Avenue NE, crosses under NE 195th Street through a culvert, then continues along the north side of Ballinger Way. The project ends several hundred feet downstream.

Item	Description
Location	25 th Avenue NE in the City of Shoreline, Washington, from Brugger's Bog Park to NE 195 th Street and along Ballinger Way in Lake Forest Park, Washington
Existing conveyance	Parallel buried culverts on either side of 25 th Avenue NE from the southeast corner of Brugger's Bog Park to the south end of the future Shoreline North Maintenance Facility, open channel from there to NE 195 th Street, culvert under NE 195 th Street, and open channel along Ballinger Way
Current ground cover	Variable along alignment – includes gravel surfacing, roadway pavements, trees and brush
Existing topography	Relatively flat along the northern portion of 25 th Avenue NE; as 25 th Avenue NE approaches Ballinger Way it slopes up to match grade with Ballinger Way forming an approximately 1H:1V sloped bank down to the open channel; along Ballinger Way the south stream bank is formed by a distressed gabion basket wall with exposed height of about 8 feet and 2.5H:1V backslope above.

3.0 SUBSURFACE CONDITIONS

3.1 Geology

The Geologic map of the Edmonds East and part of the Edmonds West quadrangles, Washington (Minard, J.P. 1983) shows the surficial geology for the site is mapped as Qtb – Transitional Beds. This unit is Fraser-age to Pre-Fraser. These glacial and non-glacial deposits are highly variable in composition but consist mostly of gray clay, silt, and fine sand. Gravels, cobbles, and boulders may also be present.

3.2 Typical Profile

Based on the results of borings B-1, B-2, and B-3, subsurface conditions along the project alignment from the southeast corner of Brugger's Bog Park to about 195th Place NE can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/ Density
1	3.5 to 5	Possible Fill consisting of silty SAND with gravel	Very Loose to Medium Dense
2 ¹	Greater than 21.5	Transitional beds consisting of interbedded SAND and GRAVEL with varying fines content	Medium Dense to Very Dense

1. Each of the borings B-1, B-2, and B-3 were terminated at its planned depth of approximately 20 feet within this stratum.

Based on the results of boring B-4 and Washington State Department of Transportation (WSDOT) boring H-1-16, subsurface conditions along the project alignment south from about 195th Place NE can be generalized as follows:

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/ Density
1	3.3 to 4.5	Roadway Fill consisting of silty SAND in B- 4 and well graded GRAVEL in H-1-16	Medium Dense to Dense
2 ²	13	Alluvium consisting of silty SAND with gravel and organics	Very Loose
3 ¹	Greater than 59.5	Transitional Beds consisting of interbedded SAND and GRAVEL with varying fines content and sandy SILT	Medium Dense to Very Dense

1. Borings B-4 and H-1-16 were terminated at their planned depth of approximately 30 and 60 feet, respectively, within this stratum.

2. This stratum was not observed in boring B-4.

In boring B-4 we noted olfactory detection of hydrocarbons from soil between 3 and 3 ¼ feet bgs. Subsequent lab testing results detected oil and diesel range hydrocarbons at a concentration below Model Toxics Control Act clean up levels. Some soil samples from explorations on the adjacent Shoreline North Maintenance Facility also noted hydrocarbon odors or detection in laboratory test results.

Conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in Appendix A of this report.

3.3 Groundwater

Groundwater was observed in each of our explorations. Standpipe piezometer type wells were installed in borings B-1 through B-3. The well in boring B-1 was not sounded on 7/25/2016 during our site visit to perform slug testing. The table below summarizes groundwater observations. Groundwater levels can be expected to vary seasonally and from year to year depending on precipitation, site utilization, and other on- and off-site factors.

Boring	While Drilling (feet)		7/11/2016 (feet)		7/25/2016 (feet)	
	Depth	Elevation	Depth	Elevation	Depth	Elevation
B-1	7.5	210	1.6	216		
B-2	5	210	1.8	213	2.0	213
B-3	5	208	2.8	210	2.9	210
B-4	7.5	210				
WSDOT H-1-16	7	208.6				

Slug tests were performed in wells installed in borings B-2 and B-3. Hydraulic conductivity estimates calculated from the slug test monitoring data ranged from about 11 to 26 feet per day. Average hydraulic conductivity is estimated to be 19 and 13 feet per day in wells installed in borings B-2 and B-3, respectively. A description of our slug test and analysis procedures along with our results are included in Appendix D.

Terracon collected groundwater samples from wells installed in borings B-2 and B-3 on July 27, 2016 and submitted them for analytical testing. All total petroleum hydrocarbon (TPH) and volatile organic compounds (VOC) results were below the laboratory method reporting limits (MRLs). Arsenic was detected in the samples, but no other metals. The groundwater sample collected from boring B-2 has a reported arsenic concentration of 5.3 micrograms per liter (μ g/L, or parts per billion [ppb]), which is just above the Washington State Model Toxics Control Act (MTCA) Method A cleanup level of 5 μ g/L, which is protective of groundwater as a potable drinking water source. This low arsenic detection in the groundwater sample is likely due to background levels of arsenic in the glacially-derived sediment, and does not appear to be an indication of the presence of a release of contaminants to the environment, based on the lack of other contaminants detected in the sample.

4.0 PRELIMINARY RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

Based on the results of the subsurface exploration, laboratory testing, and our analyses, it is our opinion that the proposed stormwater conveyance improvement alternatives are geotechnically feasible. Geotechnical considerations for this project include:

- undocumented fill environmental impacts
- groundwater and dewatering
- existing utilities
- steep slopes and existing retaining walls
- liquefaction

4.1.1 Undocumented Fill

Oil and diesel range hydrocarbons were detected in a sample from boring B-4. While the sample tested was below MTCA cleanup levels, excavation could uncover areas with higher concentrations.

4.1.2 Groundwater

Shallow groundwater will likely present constructability issues related to trenching for culvert installation and for daylight sections. Intensive dewatering effort will likely be required depending on depth and location of cut.

4.1.3 Existing Utilities

A number of buried utilities run along the existing culvert on the east side of 25th Avenue NE. The design team appears to have largely avoided conflict with these utilities in their consideration of alternatives by either running the alignment down the west side of 25th Avenue NE, or into the school district property on the east side of 25th Avenue NE.

Seattle Public Utilities owns a 66-inch water transmission pipe that runs along NE 195th Street. Construction of a culvert crossing of NE 195th Street will be complicated by the location of this pipe. Box culvert replacements will have to be designed such that the stream bed is lowered by 2 to 3 feet. The pipeline will likely need to be temporarily supported across the culvert excavation during construction.

4.1.4 Steep Slope North of NE 195th Street

The west bank of the existing open channel slopes up 10 to 12 feet from the creek to 25th Avenue NE at about a 1H:1V slope. Some boulders in the stream bed appear to have tumbled down from the slope above. Proposed channel regrading and lowering would cut subvertical to vertical banks of up to about 4 feet of exposed height (1 foot of existing sediment accumulation plus 3 feet

deepening) at the toe of this slope. Given the existing constrained stream channel and available right-of-way, a new stream channel wall on the west side of the stream channel will be required and need to be designed to support surcharge from the slope and roadway above. Scour will be another major design consideration that compounds the concerns with the cut at the toe of the surcharged slope.

4.1.5 Existing Retaining Wall South of NE 195th Street

WSDOT owns a gabion basket retaining wall that forms the NE 195th Street culvert outfall headwall and the south bank of the stream channel downstream of NE 195th Street. This wall extends from the corner of NE 195th Street and Ballinger Way and continues along Ballinger Way past the south end of the project alignment. Exposed height appears to be about 8 feet with a 2.5H:1V backslope above based on a review of topographic contours and observations in the field.

The headwall for the existing culvert has completely failed and is planned for replacement by WSDOT in the next few months. The wall is in fair to poor condition along Ballinger Way. The gabion wire baskets at the base of the wall in the zone of water inundation have corroded completely through and the formerly contained spalls have spilled out. The walls appears to be leaning out from the slope in some areas due to the loss of support and the walls could be subject to failure. Proposed regrading of the stream channel would cut subvertical to vertical banks of up to about 4 feet of exposed height (1 foot existing sediment accumulation plus up to 3 feet deepening) at the toe of this wall which could cause the wall to completely fail without mitigation.

Coordinating wall replacement or rehabilitation efforts with culvert replacement and stream channel regrading has the potential advantage of addressing existing wall stability and deepened stream channel issues in one system. However, since WSDOT owns the gabion basket wall, coordination and cost sharing issues in a timely manner could be problematic.

To deepen the channel while leaving the existing gabion basket wall in place would require permanent shoring to prevent undermining the gabion wall.

4.1.6 Liquefaction

The term liquefaction refers to a phenomenon by which saturated soils develop high pore water pressures during seismic shaking and, as a result, lose their strength characteristics. This phenomenon generally occurs in areas of high seismicity, where groundwater is relatively shallow and where loose granular soils (mainly sands) or non-plastic fine-grained soils (mainly silts) are present. Ground water was encountered within about 1.5 to 7.5 feet of the ground surface in our exploratory borings. Considering depth to groundwater and varying composition and density of soil encountered in our boring, our opinion is that risk of occurrence of liquefaction is moderate.

4.2 Earthwork

Based on the subsurface conditions encountered in our exploration, we expect that all of the onsite soils within the limits of construction can be removed with conventional excavation equipment. Cobbles and boulders were not observed in our exploration but are often found in transitional beds. The contractor should be prepared to deal with cobbles and boulders. Recommendations for site preparation, structural fill, and permanent slopes are presented below.

4.2.1 Site Preparation

Prior to equipment arriving onsite, clearing and grading limits should be established and marked. Silt fences should be constructed along the downslope side of all areas planned for clearing and grading. Preparation for site grading and construction should begin with procedures intended to control surface water runoff. Diversion of the existing stream will be necessary for excavation and construction in the existing channel. The sandy site soils are moderately susceptible to erosion by flowing water.

Stripping efforts should include removal of vegetation, organic materials, and any deleterious debris from the project alignment. It appears that up to about 0.5 feet of stripping will be necessary in areas with light vegetation. Greater depths of stripping and grubbing may be necessary in areas with thick vegetation and tree roots. These materials are not suitable for reuse as structural fill. Site disturbance beyond the work area should be limited to reduce the potential for erosion and off-site sediment transport.

Areas that are stripped or excavated to the design subgrade elevation, or that are to receive structural fill, should be systematically probed to evaluate the subgrade. Any soft, loose, or otherwise unsuitable areas identified during probing should be recompacted if practical or removed and replaced with structural fill. We recommend that probing of the subgrade be observed by a representative of our firm to assess the adequacy of the subgrade conditions and identify areas needing remedial work.

4.2.2 Reuse of Site Soils

Onsite granular soils are suitable for reuse as structural fill or trench backfill on the basis of gradation. However, the fines content of near-surface onsite granular soil make this material highly moisture sensitive. The high groundwater level and in situ moisture content may make this material unsuitable for reuse as structural fill without drying back. This material is unsuitable for use during periods of wet weather.

Fine-grained soil was observed in boring B-4 and H-1-16. This material is not suitable for reuse as structural fill or trench backfill but may be reused in landscaped areas.

4.3 Dewatering

We anticipate that, with careful construction sequencing, shallow excavations less than approximately 2 feet below water table may be dewatered with sumps and pumps. Examples of sequencing construction to manage groundwater include, but are not limited to, starting at the low end of excavation and opening only limited areas so that seepage remains within the removal capacity of the equipment on hand. These considerations may apply to portions of the alignment where the stream may be daylighted.

For deeper excavations a more intensive dewatering effort will be required. While dewatering design is the responsibility of the contractor, we expect that a system of vacuum well points for dewatering less than 15 feet below top of the extraction well, or pumping extraction wells for deeper pumping depths, will be suitable for dewatering trenches to install pipe culvert or box culverts. The trench should be dewatered prior to and during construction to a depth of at least 2 feet below the trench bottom. Disposal of water pumped from the trench should be in accordance with City, County, and State requirements.

Terracon estimates that flow rates may be expected to be in the range of about 250 gallons per minute to about 60 gallons per minute. Dewatering flow rate estimates are based on a number of assumptions and idealizations, including dewatered length limited to 100 feet at a time and depth to about 10 feet. Hydrogeological conditions are greatly simplified from existing conditions for the purpose of estimation. The flow rate estimates are average values over time. Instantaneous flow rates may be significantly higher, particularly at start of pumping a new section. Actual flow rates observed at a particular time and location during construction could vary significantly from the estimates provided due to:

- spatial variability in hydraulic conductivity,
- groundwater elevations at the time of dewatering (including seasonal variability),
- the depth of drawdown required at a particular location,
- the stage of dewatering (higher rates to initially drawdown the groundwater; lower rates to maintain a steady state condition once drawdown has occurred),
- the length of trench dewatered at one time,
- dewatering system design,
- construction sequencing, and/or other factors.

It should also be noted that a factor of safety or other specific conservative assumptions were not included in the model input parameters. Therefore, use of the flow rate estimates from the model should be used carefully and with full consideration of how actual conditions could vary from the model assumptions.

At commencement of dewatering any given section, flow rates are expected to be highest and would decrease as the dewatering system draws the water table down. Dewatering rates would tend toward the lower end of the estimated range for shallower excavations for stream daylighting.

4.4 Box Culverts

Box culverts are proposed in several configurations as part of Options A, B, and C. Foundations should bear on either relatively undisturbed medium dense to very dense sand and gravel of the transitional beds, or structural fill extending down to the transitional beds. Based on the preliminary profile provided by Louis Berger, it appears that thalweg will be within about 2 to 5 feet with the contact with the transitional beds. Given that minimum embedment of foundations of 2 feet and that foundations may be deeper for scour considerations we anticipate minimal overexcavation would be required for box culvert foundations.

Headwalls of box culverts should extend below scour depth. For preliminary design we recommend assuming that headwalls should extend at least 2 feet below the culvert footing depth.

4.5 Pipe Culverts

Based on the preliminary profile provided by Louis Berger, it appears that thalweg will be within about 2 to 5 feet of the contact with the transitional beds. The medium dense to very dense sand and gravel transitional bed soils or medium dense granular alluvial soils will provide adequate support to the 72-inch diameter corrugated metal pipe (CMP) culvert proposed in Options C and D. Localized soft areas at the bottom of the trench excavation may need to be overexcavated and replaced with structural fill. The CMP should be bedded in a well-graded granular material with particles no larger than 1 ½-inches in diameter and fines content less than 10 percent.

4.6 Support of Tolt Pipeline

We expect that the pipeline will not be able to span the 15 to 20 foot wide excavation required to install a 10 foot wide culvert. Smaller pipelines are sometimes supported from above by spanning the excavation with structural steel placed on grade and tying the pipeline to the steel. The size of this pipe may require bracing the pipeline on a pile-supported frame. Based on the information from WSDOT boring H-1-16, driving piles with impact or vibratory hammers or drilling soldier piles appears feasible.

The design team expects minimum clearance between the pipe invert and the top of the culvert. Standard culvert designs typically require 2 or more feet of soil cover to distribute heavy loads from above. Depending on culvert design and configuration, pipeline bracing may need to be permanent to keep load off of the culvert.

4.7 Open Channel Slopes

Open channel cut slopes should be no steeper than 2H:1V and would require surface protection from erosion. Cut slopes covered by a geotextile and rock facing sized to prevent erosion and

scour could be used to protect the cut slopes. Synthetic slope protection systems are also available such as cellular confinement (or geocells) with the cells filled with granular material and seeded with grasses to provide a greener alternate slope protection concept.

4.8 Channel Wall Alternatives

Permanent stream channel walls and temporary shoring for stream regrading will need to be designed to support surcharge from the slopes and potentially the roadway above. Scour will be another major design consideration that compounds the concerns with the cut at the toe of the surcharged slope since it means effectively designing for a higher retained height at toe of slope. These considerations limit feasible wall system alternatives where surcharges exist along 25th Avenue NE and Ballinger Way.

4.8.1 Soldier Pile and Lagging

A soldier pile wall with lagging would be capable of supporting the surcharges. Equipment access could be a challenge to constructing this system at this location. Driving piles with a vibratory hammer appears to be feasible based on the soils observed in boring B-4 and H-1-16. Given space constraints for equipment and the desirability of not generating spoils, driven piles offer an advantage over drilled soldier piles. However, ground vibrations from installation by driven methods could be of concern for nearby residential structures. Permanent soldier piles would require corrosion protection (hot dip galvanizing is typical) or sacrificial thickness if left exposed to the elements. Lagging should be installed to at least 2 feet below the anticipated scour depth.

Lagging/facing options include:

- Pressure-treated wood lagging is often used for permanent walls without other facing for its ease of installation and relative price. However, this alternative may not be the most appropriate considering the alternate wetting and drying conditions at the stream channel and potential environmental concerns for use of pressure-treated products in an aquatic environment.
- Concrete lagging might be a lower maintenance alternative to pressure-treated wood. The exposed side can be formed and dyed to give an attractive appearance. Installation can be difficult, however. Concrete lagging is typically precast and sizing in the field is not possible. Pile installation tolerances may need to be tightened or a wider flange on the piles may be needed to ensure adequate bearing area of the lagging on the pile flanges. Of the facing options presented this could be the most expensive to construct.
- Temporary wood (untreated) lagging with a permanent concrete facing has some of the advantages of both pressure treated wood and concrete lagging. The facing can be precast concrete panels or shotcrete sculpted and dyed to give a more natural appearance. With adequate shotcrete cover over the piles, corrosion protection or sacrificial thickness may not be required. Initial installation of lagging is still relatively simple but requires the additional step of adding permanent facing.

Placing shotcrete in the stream channel may pose permitting and/or constructability challenges.

4.8.2 Gravity

A gravity wall constructed with ecology blocks or cast-in-place concrete is another alternative capable of supporting the surcharges. Ecology blocks are available with many facing patterns and can be dyed for asthetics. We anticipate that this wall system will have to extend about 4 feet below the proposed channel bottom to account for scour depth and to maintain minimum embedment depth. This means that a cut of 6 to 8 feet at the toe of slope will be required. Our opinion is that stand-up times in the wet silty sand soil observed in boring B-4 would be too short to allow an open cut of even a modest length for construction. We expect that some form of temporary shoring such as sheet piles or soldier pile and lagging would be required to construct a gravity wall.

4.8.3 Sheet Piles

Driving sheets with impact or a vibratory hammer appears to be feasible though driving could be difficult through the silty gravel observed between elevation 196.5 and 192 feet in boring B-4. Sheet piles could be used for temporary shoring or for a permanent wall though the aesthetics may not be as pleasing as other alternatives. As with exposed soldier piles for permanent applications, corrosion protection or sacrificial steel should be provided for the portion of the piles above seasonal low groundwater.

4.8.4 Rockery

We understand that a rockery has been considered initially by the design team. Rockeries are suitable for protection of cut slopes of limited height in otherwise stable ground and are not considered to be effective as engineered retaining structres. In our opinion, rockeries are not suitable for retaining slopes with the soil conditions present at borings B-4 and H-1-16. Armoring the east bank of the stream channel where the backslope is relatively level and of limited height with a rockery (or slope armored with rock) appears feasible geotechnically. It is our opinion that a rockery is not appropriate along the relatively high and steep west bank along 25th Avenue NE north of NE 195th Street or the south bank along Ballinger Way where the existing height and steepness of slope or the presence of a failing gabion wall requires a more positive form of slope retention.

4.9 Recommendations for Final Design

After the preferred alternative is selected, Terracon will refine and expand upon the preliminary recommendations presented in this report and make them specific to the preferred alternative. These refinements may include, depending on the alternative selected:

 Slope stability modeling of the proposed final stream configuration at 25th Avenue NE and Ballinger Way

- One additional boring downstream of NE 195th Street
- Specific material and compaction requirements for support and backfill of buried structures
- Shoring and/or retaining wall recommendations specific to the selected system
- Underpinning and protection of the SPU water pipe
- Plan review for consistency with our geotechnical recommendations.

5.0 GENERAL COMMENTS

This report has been prepared to provide preliminary geotechnical engineering to support evaluation of project alternatives. Once an alternative is selected and the project moves toward final design, it is intended that Terracon replace this preliminary report with a design phase geotechnical engineering report that addresses the specific geotechnical design and construction elements associated with the selected project alternative.

At the conclustion of design, Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The preliminary analyses and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions other than the limited soil and groundwater testing as discussed in this report. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of Louis Berger for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered

valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

Field Exploration Description

The proposed boring locations were laid out in the field by a Terracon representative using a scaled site plan provided by Louis Berger, Inc. and a tape measure. Ground surface elevations indicated on the boring logs were interpolated from the topographic contours on the site plan. The locations and elevations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

The borings were drilled with a truck-mounted rotary drill rig using hollow-stem augers to advance the boreholes. Samples of the soil encountered in the borings were obtained using the split-barrel sampling procedures.

In the split-barrel sampling procedure, the number of blows required to advance a standard 2inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is used to estimate the in situ relative density of cohesionless soils and consistency of cohesive soils.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings performed on this site. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. Information provided on the boring logs attached to this report includes soil descriptions, consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The borings were backfilled with bentonite chips prior to the drill crew leaving the site.

Standpipe piezometers were installed in borings B-1, B-2, and B-3. Each of these wells was screened from approximately 10 feet below ground surface (bgs) to 20 feet bgs with 2-inch nominal diameter by 0.020-inch slotted PVC pipe. The filter pack consisted of #10-20 Colorado Sand.

A field log of each boring was prepared by a Terracon geotechnical engineer. These logs included visual classifications of the materials encountered during drilling as well as the engineer's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on laboratory observation and tests of the samples.

		BO	RING LO	OG	NO	. B	-1				Pag	e 1 of [.]	1
PR	OJECT: 25th Avenue NE Flood Reduct	tion		CLIE	NT:	Loui	is B	Berge	er				
917	E •					Seat	tle,	Was	shington				
31	Shoreline, Washington												
90	LOCATION: See Exhibit A-2		INSTALLAT	ION	·	DNS NS	ΡE	(In.)	۲.	0		(%	ES
HICL	Latitude: 47.772063° Longitude: -122.302964°		DETAILS	6	ΓΗ (Ft	R LEV	ΕT	ERY (DITES	PLE IC	(mqq)	TER ENT (IT FIN
GRAP	Approximate Surface Elev: 2'	19 (Ft.) +/-			DEPI	VATE	AMPL	ECOV	FIELD	SAM	DIA	WA CONTI	ERCEN
<u></u>	DEPTH ELEVATI	ION (Ft.)		MM		> ö	Ś						ä
	SILTY SAND (SM), olive gray, moist	210.3+/-											
	2.0	217+/-											
0	<u>SILTY SAND (SM)</u> , with gravel, brown, very loose, moist, with rootlets						\bigtriangledown		2-1-1				
0							\square	2	N=2	S-1	0.2		
0	5.0	214+/-			F								
0	POORLY GRADED SAND WITH SILT (SP-SM), gravelly, gray, medium dense,				5		\mathbb{N}	11	6-9-15	S-2	0.3	15	8
00	wet						\vdash		N=24				
<mark></mark> (trace gravel											[
•							X	12	8-9-15 N=24	S-3	0.4		
<mark>)</mark>													
0	gravelly, very dense				10-		\bigtriangledown	12	12-49-35	S 1	0.4		
2							\square		N=84	3-4	0.4		
<mark>.</mark>					_								
	with gravel, dense						\mathbb{N}	6	7-14-16 N=30	S-5	0.6		
							\vdash						
0	very dense				15				16 21 20				
ୄୖୄ୰							М	15	N=51	S-6	0.5		
<u></u>													
0													
					_								
•		199+/-			20-								
	20.8 Boring Terminated at 20.83 Feet	198+/-		6655			K	14	39-50/4" N=50/4"	S-7	0.4		
	Stratification lines are approximate. In-situ, the transition m					 Hamm	er Type: Automatic SP	T Hammer		[]	l		
Advancement Mathad													
Advan HS/	A 4 1/4" ID, 8" OD	hibit A-3 for desc ures.	ription of	f field			votes: Vell Ta	ig BJW 176					
L		ures and addition	al data (if any).									
Aband Bor	Ionment Method: ings backfilled with bentonite chips upon completion	penaix C for expl iations. ons were internal	ated from	ot symb	ois and								
	WATER LEVEL OBSERVATIONS	n.			3. apin	- R	orina Si	arted: 7/5/2016	Boring (Completer	d. 2/2/20/	16	
∇	While drilling		lerr					jll Ria	D-120 truck	Driller' F		2. 110/20	
<u> </u>	1.6' bgs on 7/11/2016	┤╹	21905 64th A	ve W Ste	e 100		Pr	niect N	lo : 81165045	Evhibit:	Δ_4		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL 81165045.GPJ TERRACON2012.GDT 9/2/16

		ВО	RING LO	OG	NO.	В-	2				Pag	e 1 of [.]	1
PF	ROJECT: 25th Avenue N	E Flood Reduction		CLIE	NT:	Loui	s B	ergei	hinaton				
Sľ	ITE:					Seal	ue,	vvas	lington				
	Shoreline, Was	shington				.		i			-		r
90	LOCATION: See Exhibit A-2		INSTALLATI	ION	t.)	A S I S I S I S I S I S I S I S I S I S	ſΡΕ	(In.)	t o	Ω		(%)	RS
HICL	Latitude: 47.771543° Longitude: -122.302	944°	DETAILS	5	EH (F	R LEV	Г Щ	ΈRΥ	O TES	PLE II	(mqq)	TER ENT (IT FIN
ßRAP		Approximate Surface Elev: 215 (Ft.) +/-			DEPI	SER	AMPL	COV	FIELD	SAM	DIA	WP NT	RCEN
0	DEPTH	ELEVATION (Ft.)				≤₿	Ś	R				0	Ы
	0.5 FILL - , CRUSHED ROC	K SURFACING 214.5+/	-										
0	gray, medium dense, mo	pist											
0	<u>N</u>						\bigvee	7	6-10-11	C 1	1.0		
	4.0	211+/	-				\triangle	1	N=21	3-1	1.0		
	SILTY SAND (SM), olive	gray, medium			_	∇							
					5		\bigvee	10	6-10-15	0.0	0.5		
					_		\wedge	10	N=25	5-2	0.5		
	7.5	207 5+/				-							
	SILTY GRAVEL (GM), sa	andy, gray, very							27-30-29				
	dense, wet						\wedge	9	N=59	S-3	0.6	8	14
						1 [
					10-				17-30-27				
							X	12	N=57	S-4	1.2		
						ĺĺ	<u> </u>						
	SILTY SAND (SM), grave	202.5+/ elly, gray,	-						14 01 07				
	dense, wet						Х	12	N=48	S-5	0.5		
						1 1	<u> </u>						
	medium dense				1 5				44.40.40				
							Х	10	N=24	S-6	1.0		
							<u> </u>						
					20-								
							X	12	21-30-33 N=63	S-7	0.7		
	Boring Terminated at 2	193.5+/ 1.5 Feet	-	REAL									
	Stratification lines are approximate	adual.					lamme	Type: Automatic S	PT Hammer				
Adva HS	ancement Method: SA 4 1/4" ID. 8" OD	xhibit A-3 for desc	ription of	f field		N	lotes:						
	- ,	ppendix B for desc	cription o	of labora	tory	V V	Vell Tag	BJW 175					
Aban	ndonment Method:	ppendix C for expl	al data (i anation d	if any). of symbo	ols and								
Во	prings backfilled with bentonite chips up	viations. ions were interpola	ated fron	n a topo	graphic	,							
┣──	WATER LEVEL OBSERV	an.					rina Sta	rted: 7/5/2016	Boring	omplata	4.7/5/20/	16	
\square	While drilling		ller					y 3ta		Burny C		u. 113/20	10
	1.8' bgs on 7/11/2016	'	21905 64th Av	ve W Ste	e 100			II KIG: L	1009	Driller: I	olocene		
1			Mountlake T	errace.	WA		Pro	oject No	.: 81165045	Exhibit:	A-5		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL 81165045.GPJ TERRACON2012.GDT 9/2/16

	В	DRING L	OG	NO.	B	-3				Pag	e 1 of [.]	1
PR	OJECT: 25th Avenue NE Flood Reduction		CLIE	NT:	Loui	s B	erger					
SI	 [E:			i	Seat	tie,	vvasi	nington				
	Shoreline, Washington											
00	LOCATION: See Exhibit A-2	INSTALLAT	ION		/EL	ΡE	(In.)	t. c	0		(%)	E S
HICL	Latitude: 47.77112° Longitude: -122.302913°	DETAILS	S	TH (FI	R LEV	ĒŢ	ΈRΥ	D TES	PLE II	(mqq)	NTER ENT (AT FIN
GRAP	Approximate Surface Elev: 213 (Ft.)	+/-		DEP'	VATE	AMPI		FIELI	SAM	DID	WP SONT	ERCE
	DEPTH ELEVATION (I	=t.)			≤ö	Ś	12				0	H
	0.5 FILL - , CRUSHED ROCK SURFACING 212.	5+/-										
	gray, medium dense, moist											
0												
	3.5 209.9	5+/-				\mathbb{V}	6	5-8-6	S-1	0.3		
	WELL GRADED GRAVEL WITH SILT					\square		N=14				
0	wet			5	\bigtriangledown							
	gravelly, wood fragments			Ŭ		\mathbb{V}	6	5-7-7	S-2	0.3	14	7
						$ \land $		IN=14				
	7.5 205.	5+/-										
0	<u>SILTY SAND (SM)</u> , gravelly, gray, very dense, wet				-	X	14	26-36-23	S-3	0.3	12	19
0						$ \land $		N-39				
<u> </u>	danaa			10-								
0	dense					X	13	8-17-22 N=39	S-4	0.2		
0						/		11-00				
6	12.5 200.4	5+/-										
\circ	dense, wet				-	X	6	22-50 N=	S-5	0.2		
								N=50/6"				
° Oʻ				15	-							
					_	X	6	28-50 N=	S-6	0.4		
						/ \	┝	N=50/3"				
<u>°U</u> ,	20.0 193 SILTY SAND (SM), with gravel, grav.	3+/-		20-		$\overline{)}$	+	00.00.04				
	very dense, wet					Х	12	23-29-31 N=60	S-7	0.4		
•	Boring Terminated at 21.5 Feet)+/-	16-637-18									
	Stratification lines are approximate. In-situ, the transition may be	gradual.					Hammer	Type: Automatic S	PT Hammer			
Advar	cement Method:	Exhibit A_3 for des	cription of	field			lotes:					
HS	A 4 1/4" ID, 8" OD pro	cedures.		flahorai	tory	V	Vell Tag	BJW 174				
	pro	cedures and addition	nal data (i	f any).	iory							
Abano Bor	Ionment Method: See ings backfilled with bentonite chips upon completion abb	e Appendix C for exp previations.	vanation (or symbo	us and							
<u> </u>		plan.	nated from	і а торо	graphic	-						
\bigtriangledown	While drilling					Bo	oring Sta	rted: 7/5/2016	Boring C	Complete	d: 7/5/201	16
∇	2.8' bgs on 7/11/2016					Dr	ill Rig: D	R009	Driller: I	Holocene		
		21905 64th A Mountlake	ve w Ste Terrace \	00 NA		Pr	oiect No	.: 81165045	Exhibit:	A-6		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL 81165045.GPJ TERRACON2012.GDT 9/2/16

		BORING LO	DG N	Ю.	B-4	4				Page	1 of 2	2
PR	OJECT: 25th Avenue NE Flood Reduct	ion	CLIEN	IT: L S	ouis eattl	Be e. V	rger Vasl	nington		0_		
SI	E:			_		-,		0				
	Shoreline, Washington				1					1		
SLOG	LOCATION See Exhibit A-2			(Ft.)	EVEL	ТҮРЕ	۲ (In.)	EST	Q	(m	ER T (%)	FINES
RAPHIC	Landue. 41.170311 Longitude122.302010	avimato Surfaco Elov: 222	(Et) +/	ЕРТН	ATER L SERVA	MPLE	COVEF	IELD T RESUL	SAMPL	PID (pp	WATE	RCENT
G	ДЕРТН	ELEVATI	ON (Ft.)		ĕä	SA	RE	Ľ.	0,		ŏ	РЕ
	0.5 FILL - ASPHALT CONCRETE, 6"		221.5+/-									
	1.0 FILL - AGGREGATE BASE COURSE, 6"		/	-	-							
0	medium dense, moist	ray, loose to	219.5+/-	_								
	<u>3.0</u> <u>FILL - LEAN CLAY (CL)</u> , sandy, gray, very so 3.3 <u>FILL - SILTY SAND (SM)</u> , gravelly, black, den	oft to soft, moist nse, oily feel,	<u>219+/-</u> 219+/-	-		\mathbb{X}	10	2-1-29 N=30	S-1	11.3		
	nydrocarbon odor LEAN CLAY (CL), sandy, gray, stiff, moist		/	-								
	No recovery			5-		\bigvee	0	4-5-5 N=10	S-2	0.3		
				_				10-10				
	8.3		214+/-	_		\bigtriangledown	9	3-2-2	S-3	0.8		
	POORLY GRADED SAND (SP-SM), with silt, i moist	red brown, loose,		_		\square		N=4		0.0		
	10.0 SILTY SAND (SM), grav, very loose, wet		212+/-	10-	-							
	<u></u> , g , , ,			_		Х	5	1-1-1 N=2	S-4	0.2		
				-								
	medium dense			_		X	5	6-9-13 N=22	S-5			
				-								
				15-		\bigvee	9	8-6-5 N=11	S-6			
				_								
				_								
				_								
				20-		\bigtriangledown	10	11-18-25	0.7			
				_		\bigtriangleup	12	N=43	5-7			
				_								
				_								
				25-								
	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.			I	Ha	ammer	Type: Automatic SP1	F Hammer	1		
Advar HS	cement Method: \ 4 1/4" ID, 8" OD	See Exhibit A-3 for descr	ription of fi	eld		Not	tes:					
		See Appendix B for desc procedures and additiona	ription of I al data (if a	aborato any).	ry							
Abano Bor	onment Method: ngs backfilled with bentonite chips upon completion	See Appendix C for expla abbreviations. Elevations were interpola	anation of ated from a	symbols a topogr	s and aphic							
	WATER LEVEL OBSERVATIONS					Borir	ng Stai	ted: 7/6/2016	Boring Co	mpleted:	7/6/201	6
\sim	While drilling	llerr	DC		Π	Drill	Rig: D	R009	Driller: Ho	olocene		
		21905 64th Av	ve W Ste 1	00		Proje	act No	. 81165045	Exhibit:	Α_7		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81165045.GPJ TERRACON2015.GDT 9/2/16

	BORING LOG NO. B-4 Page 2 of 2											
PR	OJECT: 25th Avenue NE Flood Reduction	on	CLIEN	NT: L S	ouis	Be e \	erger Nasł	nington			-	
SIT	E:			•	outti	•, •	1401					
	Shoreline, Washington								-			
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.770511° Longitude: -122.302816° Approx	ximate Surface Elev: 222	2 (Ft.) +/-	DEPTH (Ft.)	VATER LEVEL BSERVATIONS	AMPLE TYPE	ECOVERY (In.)	FIELD TEST RESULTS	SAMPLE ID	PID (ppm)	WATER CONTENT (%)	ERCENT FINES
	DEPTH	ELEVAT	ION (Ft.)		>ō	s	R				Ŭ	ä
	25.5 <u>SILTY GRAVEL (GM)</u> , with sand, gray, very de gravels	ense, wet, broken	196.5+/-	-	-	X	13	13-32-30 N=62	S-8			
	30.0 SILTY SAND (SM) gray, medium dense, wet	driller added	192+/-	- 30-								
	water at 30' bgs, driller notes heave at 30'		190 5+/-	_	-	Х	8	5-5-6 N=11	S-9			
SELTY SAND (SM), gray, medium dense, wer, driller added water at 30° bgs, driller notes heave at 30' 31.5 Boring Terminated at 31.5 Feet			190.5+/-									
	Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic SPT Hammer											
Advan HSA Aband Bori	dvancement Method: HSA 4 1/4" ID, 8" OD See Exhibit A-3 for desprocedures. See Appendix B for de procedures and addition bandonment Method: Borings backfilled with bentonite chips upon completion See Appendix C for ex abbreviations. Elevations were interpretent				ry s and raphic	No	tes:					
	WATER LEVEL OBSERVATIONS					Bori	ng Star	ted: 7/6/2016	Borina Ca	mpleted	: 7/6/20	16
\square	While drilling	llerr				Drill	Ria [,] D	R009	Driller: H	olocene		
		21905 64th A	ve W Ste 1	100		Droi	act No	. 81165045	Evhibit	Λ 7		
		Mountlake T	errace, W	A		Proj	ect No.	. 01105045	Exhibit:	A-7		

		WEL	L LOG	NO. G	BB1	I/N	1W	-4		F	Page 1 of	1
	PR	OJECT: Shoreline North Maintenance Facili	ty	CLIENT	: TC Ta	CF A	Archi na. V	tecture Vashington				
	SI	FE: 19547 25th Avenue NE Shoreline, Washington			-		- ,	J				
	SRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.771851° Longitude: -122.303263° Approximate Surface	e Elev: 217.5 (Ft.)	- / DEPTH (Ft.)	ATER LEVEL SSERVATIONS	AMPLE TYPE	ECOVERY (In.)	FIELD TEST RESULTS	MPLE NUMBER	WATER ONTENT (%)	Atterberg Limits LL-PL-PI	ERCENT FINES
		DEPTH 0.2 A <u>ASPHALT 1-2"</u> 1.0 <u>SILTY SAND (SM)</u> , with gravel, dark brown, moist <u>SAND (SP-SM)</u> , with silt, trace gravel, dark gray, me dense, wet	ELEVATION (F	=t.) 5+/~ 5+/	≤ <u>0</u>	S	R		SAI	0		BE
				-	-	X	6	5-11-10 N=21	S-1	16		11
0		grades to dense		5-	-	\boxtimes	12	11-16-16 N=32	S-2			
15.GDT 8/11/1		7.0 SAND (SP-SM), with silt and gravel, dark gray, dens 0.5	210. se, wet	<u>5+/-</u>	-	X	12	16-19-20 N=39	S-3			
TERRACON20		GRAVEL (GP), with sand, trace silt, very dense, we	20	10-	-	X	6	20-50/6" N=50/6"	S-4			
G LOGS.GPJ			-	-	X	12	19-25-21 N=46	S-5				
155070 BORIN				15-	-	X	6	50/6" N=50/6"	S-6			
r Log-No Well 811				-	-							
GEO SMAR		20.5 SANDY SILT (ML), with gravel, gray, hard, wet 21.5 Boring Terminated at 21.5 Feet	19 19	<u>7+/-</u> 6+/-		X	12	30-50/6" N=50/6"	S-7			
D FROM ORIGINAL REPORT.												
EPARATEL		Stratification lines are approximate. In-situ, the transition may be gra	I	<u> </u>	1	Ham	nmer Type: Automat	ic SPT Ham	imer		1	
IS NOT VALID IF SE	Advar 8" Abano 2"	Icement Method: See Exproved Hollow Stem Auger See Approced Ionment Method: See Approced Monitoring Well Elevati	ription of field ription of lab al data (if any anation of syn	l oratory /). mbols l using	/ and an	Note	S:					
5 LOG		WATER LEVEL OBSERVATIONS	le rod.			\\/_JI_C	tarted: 1/20/2016	14/01	Comple	ated: 1/20/201	6	
SRING	\bigtriangledown	While drilling	lerr			ר		ig: R-50	vvel		Services Inc	0
HIS B(•	21905 64th Av	e W Ste 100			Proiec	t No · 81155070			4-8	

	BORIN	G LOG	i NC). C	βB	6			F	Page 1 of	1
PR	OJECT: Shoreline North Maintenance Facility	CL	IENT	: TC Ta	F A	Arch na. V	itecture Washington			0	
SIT	E: 19547 25th Avenue NE Shoreline, Washington						Ū				
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 47.771262° Longitude: -122.303336° Approximate Surface Ele	ev: 217 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	AMPLE NUMBER	WATER CONTENT (%)	Atterberg Limits	PERCENT FINES
0.0	DEPTH ELE 0.2 \ASPHALT 1-2"	EVATION (Ft.) 217+/- 216+/-			0,7	ш		Ś			
	grades to wet	212.5+/-	-		X	9	4-2-4 N=6	S-1	15		21
0000	SILTY SAND (SM), with gravel, gray, dense, wet		5-	-	X	9	15-16-20 N=36	S-2			
	grades to very dense		-	-	X	9	17-22-44 N=66	S-3			
	9.5 GRAVELLY SAND (SP), trace silt, gray, very dense, wet	207.5+/-	10-	-	X	18	8-17-24 N=41	S-4			
'°() 000000000000000000000000000000000000	14.0	203+1	-	-	X	18	13-47-50 N=97	S-5			
	Stratification lines are conceriments. In situ, the transition may be gradual										
Advan	cement Method:	2 for dealers	n of F-1			Har Note	as:	IC OF I HAN	nner		
8" H Aband Bori	Jollow Stem Auger See Exhibit A procedures. Jollow Stem Auger See Appendix procedures are abbreviations Jonnent Method: See Appendix abbreviations Bible Auger See Appendix abbreviations Elevations we engineer's levations we engineer's levations See Appendix abbreviations	x B for description additional da x C for explanati ere measured in yel and grade ro	on of lab ta (if any ion of syn the field	oratory /). mbols : l using	and an						
	WATER LEVEL OBSERVATIONS					Boring	g Started: 1/21/2016	Bor	ing Com	pleted: 1/21/20	016
	While drilling	2113		וכ		Drill F	Rig: B-59	Dril	ler: Holt	Services, Inc.	
	219	905 64th Ave W Iountlake Terrad	Ste 100 ce, WA		-	Proje	ct No.: 81155070	Ext	ibit:	A-9	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81155070 BORING LOGS GPJ TERRACON2015.GDT 8/11/16

	TEST PIT LOG NO. TP4 Page 1 of 1										
PROJE	ECT: Shoreline North Maintenance Facility	CL	.IENT	: TC Ta	F A	Arch na, N	itecture Washington				
SITE:	19547 25th Avenue NE Shoreline, Washington										
DO LOC Latitu Latitu	CATION See Exhibit A-2 ude: 47.771831° Longitude: -122.303584° Approximate Surface Elev	v: 218 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL BSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	AMPLE NUMBER	WATER CONTENT (%)	ATTERBERG LIMITS	ERCENT FINES
FILL - AGGREGATE BASE COURSE, black, medium dense to dense, 31/2" oily feel, strong hydrocarbon odor FILL - SILTY SAND (SM), trace gravel, gray to red brown, very loose to loose, moist, trace organics and woody Md 4 Yagments Yagments </td <td>218+/- 218+/- 217.5+/- 212.5+/- 212.5+/- 212.5+/- vet 210+/-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>S-2</u> <u>S-3</u> <u>S-4</u></td> <td></td> <td></td> <td></td>		218+/- 218+/- 217.5+/- 212.5+/- 212.5+/- 212.5+/- vet 210+/-						<u>S-2</u> <u>S-3</u> <u>S-4</u>			
Stra	Stratification lines are approximate. In-situ, the transition may be gradual.										
Abandonme Backfilled	vancement Method: Backhoe with 36" bucket andonment Method: Backfilled with soil cuttings upon completion. Backfilled with soil cuttings upon completion. Backfilled with soil cuttings upon completion. See Appendix C for e abbreviations. Elevations were inter site plan.				and phic						
Wh						Test F	Pit Started: 6/27/2016	Т	est Pit Con	npleted: 6/27/2	2016
	219 M	205 64th Ave W	Ste 100 ce. WA			Exca Proie	vator: Cat 420F IT bac	khoe O	perator: Ci xhibit: A	ty of Shoreline	e

		TEST PIT LOG NO. TP5 Page 1 of 1												
F	R	OJE	CT: Shoreline North Maintenance	e Facility	CLI	IENT	: TC Ta	CF A	Arch na, N	itecture Washington			-	
\$	SIT	E:	19547 25th Avenue NE Shoreline, Washington							Ū				
		LOCA	ATION See Exhibit A-2			Ft.)	EVEL	ГҮРЕ	Y (In.)	TS TS	JMBER	R F (%)	ATTERBERG LIMITS	INES
		Latituc	le: 47.771698° Longitude: -122.303424°	nate Surface Elev: 215 (Et) +/-	ОЕРТН (ATER LI SERVAT	MPLE	COVER	FIELD TE	IPLE NU	WATE	LL-PL-PI	RCENT F
Ċ)	DEPT	Н	ELEVATION	(Ft.)	-	ЗB	S⊿	R		SAN	Õ		Ē
××	××		<u>ILL - ASPHALT CONCRETE</u> , 3" ILL - AGGREGATE BASE COURSE, blac	k, medium	15+/- 1.5+/-	_		8			S-1	<u>}</u>		
		<u>F</u> t	FILL - SILTY SAND (SM), with gravel, trace o red brown, very loose to loose, moist, tra	cobbles, gray ice organics and		-		1993 1993			S-2			
	·: ·: <u>\</u>	3.5 V 4.0 ∖t	voody fragments ree roots	211 / 2	1.5+/- 11+/-	_	\bigtriangledown	1993 1993			S-3	80	NP	
•	() 	<u>5.0</u> F	PEAT (PT), brown, very soft to soft POORLY GRADED GRAVEL WITH SILT (GRAVEL WITH SILT)	P-GM) , sandy. 2	10+/-	5 —					0.4			
	η	6.0 \fi	ine gravel, gray, medium dense to dense, ragments, groundwater seepage from 4'	wet, trace woody	09+/-	-					5-4	1		
/11/16		F	SILTY SAND (SM), olive gray, medium den POORLY GRADED GRAVEL WITH SILT (G	se to dense, wet		_								
		8.5 C	coarse gravel, gray, medium dense to dens	se, wet, 206	6.5+/-	_		ίως			S-5			
D FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 81155070 BORING LOGS GPJ TERRAC														
Stratification lines are approximate. In-situ, the transition may be gradual.														
NOT VALID IF SE	vano Back	cement khoe wi	Method: ith 36" bucket	See Exhibit A-3 for desc procedures. See Appendix B for des procedures and addition See Appendix C for exp abbreviations	cription criptior nal data lanatio	of field n of labo a (if any n of syr	oratory). nbols	/ and	Note	95:				
OGIS	saci	killed v		Elevations were interpol site plan.	lated fr	om a to	pogra	phic						
ZING L	7	Whil	ATER LEVEL OBSERVATIONS				7		Test F	Pit Started: 6/27/2016	Tes	t Pit Cor	npleted: 6/27/	2016
S BOF				21905 64th A		Ste 100			Exca	vator: Cat 420F IT bac	khoe Op	erator: C	ty of Shorelin	е
王				Mountlake	Terrace	e, WA			Proje	ct No.: 81155070	Ex	nibit: A	-11	

		WELL L	OG NO.	B1					Pa	age 1 o	f 1
PR	OJECT: Shoreline North Maintenance F	acility - LSI	CLIENT: TO	CF Architectu	ire naton					<u></u>	
SIT	E: 19547 25th Avenue NE Shoreline, Washington			,,	J						
DOG	LOCATION See Exhibit 2			INSTALLATION DE	TAILS	(ft)	EVEL	гүре	D	ALUE	JMBER
BRAPHIC				Well Completion:		DEPTH	ATER LI	AMPLE	OVA/PI (ppm)	SPT N-V/	MPLE N
0	DEPTH MATERIAL DESCRIPTION	N	ELEVATION (Ft.)				≥ö	S/		0,	SA
	0.2 ^ <u>ASPHALT 1-2"</u>		/_								
	SILTY SAND (SM), with gravel, brown/dark brown SAND (SP), gray, moist, hydrocarbon odor		/			_					
						_			<1		
	grades to saturated 4.0			-2/4" Slotted		_	\bigtriangledown		48.7		B1-3'
	4.5 SILT (ML), with organics, dark brown, moist			PVC pipe	[-]						
	5.0 SAND (SP) , with gravel, gray, wet			packed in sand	8 — 8 88	5 —			3.8		
	SILT (ML), with organics, dark brown, moist					_					
0 'o (GRAVELLY SAND (SP), gray, wet					_					
0	8.0				6-3	_			<1		
N/	8.5 CLAYEY SILT (CL-ML), tan, moist				8-18						
<u>'o (</u>	<u>GRAVELLY SAND (SP)</u> , gray, wet					_					
0					8-3	10-					
10					88	-					
20						_					
0						_			<1		
	13.0 SANDY SILT (SM) tan wet				8 — 8 8 — 8	_					
	14.0				88	_					
	Boring Refusal at 14 Feet										
┣──	The stratification lines represent the approximate transition by	etween differing soil type	es and/or rock								
	types; in-situ these transitions may be gradual or may occur a	at different depths than s	hown.								
Advan	cement Method:	See Appendices for des	cription of field	Notes:							
Dire	ct Push	procedures.		- Temporary	well ren	noved af	ter gro	oundw	ater sa	ample coll	ection.
L											
Aband	onment Method:										
Bori	ngs backfulled with bentonite chips upon completion										
	WATER LEVEL OBSERVATIONS			Well Started:	1/11/201	6	W	ell C	omplet	ed: 1/11/2	016
	vvnile Drilling	lierr	acor	Drill Rig: AMS	Power	Probe	D	riller:	Holt S	ervices, In	С.
—		21905 64th Ave Mountlake Terra	e. W, Suite 100 ace Washington	Project No.: 8	1157201		E	xhibit	: A-1	2	

		WELL L	.OG NO.	B2			P	age 1 of 1	1
P	ROJECT: Shoreline North Mainte	nance Facility - LSI	CLIENT: TC	F Architecture	on				
s	SITE: 19547 25th Avenue NE Shoreline, Washington								
PHIC LOG	LOCATION See Exhibit 2			INSTALLATION DETAIL	S (ft)	ER LEVEL RVATIONS	LE IYPE /A/PID ppm)	N-VALUE	E NUMBER
GRA				Well Completion:	DE	0BSEI	SAMF 0	SPT	SAMPI
	DEPTH MATERIAL D 0.2.∧ASPHALT 1-2"	ESCRIPTION	ELEVATION (Ft.)						0)
3/16	SILTY SAND (SM), with gravel, brown/o	dark brown, moist	/				<1		
012.GDT 2/2	grades to gray						<1		
	5.5 SILTY SAND (SM), with organics, gray,	wet		-3/4" Slotted PVC pipe packed in sand	5-		<1		
G B	7.5 SILT (ML), grav, moist					\bigtriangledown			
HSU	GRAVELLY SAND (SP), gray, wet					Ť þ	<1	В	2-7.5'
IG LOGS-ENVIRO DIRECT I					 10 		<1		
57201 BORIN	GRAVEL (GP), with sand, gray, wet								
811 11 11	Boring Terminated at 15 Feet				15				
TED FROM ORIGINAL REPORT. ENVIRONMENTAL SMARI LU	The start factor is a successful to successf								
EPARA	types; in-situ these transitions may be gradual or	may occur at different depths than s	es and/or rock shown.						
Appendix App	rancement Method: Direct Push	See Appendices for des procedures.	cription of field	Notes: - Temporary well	removed aft	er grour	ndwater sa	ample collect	tion.
	anoonment Method: sorings backfilled with bentonite chips upon completion	1							
	WATER LEVEL OBSERVATIONS			Well Started: 1/11/	2016	Wel	II Complet	ed: 1/11/201	6
	While Drilling	— lierr	acor	Drill Rig: AMS Pow	er Probe	Drill	ler: Holt S	ervices, Inc.	
THISE		21905 64th Av Mountlake Terra	e. W, Suite 100 ace, Washington	Project No.: 81157	201	Exh	ibit: A-	13	

		WELL L	OG NO.	B3				P	age 1 c	of 1
PF	ROJECT: Shoreline North Maintenance	Facility - LSI	CLIENT: TO	F Architectu attle. Washii	ire naton					
SI	TE: 19547 25th Avenue NE Shoreline, Washington			· · · · ,	J					
GRAPHIC LOG	LOCATION See Exhibit 2			INSTALLATION DE	ETAILS	DEPTH (ft)	VATER LEVEL BSERVATIONS	OVA/PID (ppm)	SPT N-VALUE	AMPLE NUMBER
	DEPTH MATERIAL DESCRIPT	ION	ELEVATION (Ft.)			:	> 0 v	5		SA
3/16	GRAVEL (GP), with sand, gray, wet		/					<1		B3-1'
2012.GDT 2/2						_		<1		
ACON	5.0 GRAVEL (GP), gray, wet			-3/4" Slotted —— PVC pipe		5 —		<1		B3-2'
H.GPJ TERR	6.0 SAND (SP), with gravel, gray-brown, wet			packed in sand		_				
	<u>SAND (SP)</u> , black					_		<1		
	GRAVELLY SAND (GP), gray, wet					10-				
BORING LOGS-EN	grades to brown					_		<1		
G 811572011	15.0 Boring Terminated at 15 Feet					_ 15—				
L SMART LO										
IRONMENTA										
PORT. ENV										
RIGINAL REF										
TED FROM C	The stratification lines represent the approximate transition	hahwaan difforing coll tor	as and/or rock							
PARA	types; in-situ these transitions may be gradual or may occ	ur at different depths than s	shown.							
Adva Dir	ncement Method: ect Push	See Appendices for des procedures.	cription of field	Notes: - Temporary	well rem	oved afte	er groun	dwater sa	ample coll	ection.
Aban S S S S S S S S S S S S S S S S S S S	donment Method: rings backfilled with bentonite chips upon completion									
	WATER LEVEL OBSERVATIONS While Drilling			Well Started:	1/11/201	6	Well	Complet	ted: 1/11/2	2016
IS BOF	•	21905 64th Av	e. W, Suite 100	Drill Rig: AMS	8 Power	Probe	Drille	er: Holt S	ervices, Ir	nc.
Ē		Mountlake Terra	ace, Washington	Project No.: 8	1157201		Exhi	bit: A-	14	

		E	BORING LC	DG NO. MW	/1				Pa	age_1 of	1
PR	OJECT:	Shoreline North Maintenance	Facility - LSI	CLIENT: TCF A	Architecture						
SIT	E:	19547 25th Avenue NE Shoreline, Washington		Jean	e, washington						
GRAPHIC LOG	LOCATIO	N See Exhibit 2		1		DEPTH (ft)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SPT N-VALUE	SAMPLE NUMBER
	DEPTH 0.2_\ ASPH	HALT 1-2"	L DESCRIPTION		ELEVATION (Ft.)						0)
	<u>SANI</u>	<u>) (SP)</u> , brown-gray, moist				_			<1		
	4.0 grade	es to wet				_	\square		<1	. N	IW1-:
	4.5 <u>SILT</u> SANE	(ML), with organics, dark brown, moist (SP), gray, wet				_ 5 —			<1		
	7.0 grade SILT	es to brown (ML), light brown with orange mottling, wet				_					
000	8.0 SILT	Y SAND (SM), with gravel, gray, wet				_			<1		
0						10—	-				
<mark>)</mark>	11.0 Refu :	sal at 11 Feet				_					
	The stratif types; in-s	ication lines represent the approximate transition litu these transitions may be gradual or may occur	between differing soil typ at different depths than s	es and/or rock shown.							
dvan Dire	cement Meth ct Push	iod:	See Appendices for des procedures.	scription of field	Notes:						
band Bori	onment Meth ngs backfille	nod: d with bentonite chips upon completion									
$\overline{\nabla}$	WATE	R LEVEL OBSERVATIONS			Boring Started: 1/11/20	016	В	oring	Compl	eted: 1/11/	2016
<u>~</u>	vvnile Dh	······································	21905 64th Av		Drill Rig: AMS Power	Probe	D	riller:	Holt S	ervices, Inc	
			Mountlake Terra	ace, Washington	Project No.: 81157201		E	xhibit	: A-1	15	

APPENDIX B LABORATORY TESTING

Draft Alternatives Geotechnical Engineering Report 25th Avenue NE Flood Reduction - Shoreline, Washington September 2, 2016 - Terracon Project No. 81165045

Laboratory Testing Description

Soil samples were tested in the laboratory to measure their natural water content. The test results are provided on the boring logs included in Appendix A.

Descriptive classifications of the soils indicated on the boring logs are in accordance with the enclosed General Notes and the Unified Soil Classification System. Also shown are estimated Unified Soil Classification Symbols. A brief description of this classification system is attached to this report. All classification was by visual manual procedures. Selected samples were further classified using the results of grain size distribution testing. Grain size distribution plots are included in this appendix. Fines content results are also provided on the boring logs.

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS-2 81165045.GPJ 35159097 - ATTERBERG ISSUE.GPJ 9/2/16 REPORT. ORIGINAL SEPARATED FROM NOT VALID IF ABORATORY TESTS ARE

August 2, 2016

Mr. Mike Noll Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Mr. Noll,

On July 27th, 2 samples were received by our laboratory and assigned our laboratory project number EV16070152. The project was identified as your 81165045. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Sagur

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental Exhibit C-3

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043			DATE: ALS JOB#: ALS SAMPLE#:			
CLIENT CONTACT:	Mike Noll		D	ATE RECEIVED:	07/27/20)16	
CLIENT PROJECT:	81165045		COL	LECTION DATE:	7/27/201	6 12:51:00	PM
CLIENT SAMPLE ID	B-2-W		WDOE AG	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
			REPORTING	DILUTION		ANALYSIS	
ΔΝΔΙ ΥΤΕ	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	07/29/2016	PAB
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	07/28/2016	EBS
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	07/28/2016	EBS
Dichlorodifluoromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Chloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	07/29/2016	DLC
Bromomethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Chloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Carbon Tetrachloride	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Trichlorofluoromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Carbon Disulfide	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Acetone	EPA-8260	U	25	1	UG/L	07/29/2016	DLC
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Methylene Chloride	EPA-8260	U	5.0	1	UG/L	07/29/2016	DLC
Acrylonitrile	EPA-8260	U	10	1	UG/L	07/29/2016	DLC
Methyl T-Butyl Ether	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1-Dichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
2-Butanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
2,2-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Bromochloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Chloroform	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1,1-Trichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,2-Dichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Trichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,2-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Dibromomethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Bromodichloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
4-Methyl-2-Pentanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC
Toluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1,2-Trichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
2-Hexanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC
1,3-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 Exhibit C-3 ALS Group USA, Corp dba ALS Environmental

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	Terracon 21905 - 64th Ave V Mountlake Terrace	W, Suite 100 e, WA 98043		DATE: ALS JOB#: ALS SAMPLE#:	8/2/2016 EV16070152 EV16070152-01		
CLIENT CONTACT: CLIENT PROJECT:	Mike Noll 81165045			ATE RECEIVED: LECTION DATE:	07/27/20 7/27/201	07/27/2016 7/27/2016 12:51:00 PM	
CLIENT SAMPLE ID	B-2-W		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Dibromochloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,2-Dibromoethane	EPA-8260	U	0.010	1	UG/L	07/29/2016	DLC
Chlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	07/29/2016	DLC
Styrene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
o-Xylene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Bromoform	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Isopropylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,2,3-Trichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
Bromobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
N-Propyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
2-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
4-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
T-Butyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC

N-Propyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
2-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,3,5-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
4-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016
T-Butyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,2,4-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
S-Butyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
P-Isopropyltoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,3-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,4-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
N-Butylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,2-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,2-Dibromo 3-Chloropropane	EPA-8260	U	10	1	UG/L	07/29/2016
1,2,4-Trichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
Hexachlorobutadiene	EPA-8260	U	2.0	1	UG/L	07/29/2016
Naphthalene	EPA-8260	U	2.0	1	UG/L	07/29/2016
1,2,3-Trichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016
Mercury	EPA-245.1	U	0.20	1	UG/L	07/28/2016
Arsenic	EPA-200.8	5.3	1.0	1	UG/L	07/28/2016
Cadmium	EPA-200.8	U	1.0	1	UG/L	07/28/2016

SURROGATE

Chromium

Lead

METHOD

EPA-200.8

EPA-200.8

%REC

U

U

ANALYSIS ANALYSIS

07/28/2016

07/28/2016

UG/L

UG/L

DATE ΒY

DLC

DLC

DLC DLC

DLC

DLC

DLC DLC

DLC

DLC

DLC RAL

RAL

RAL

RAL

RAL

Page 3

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 Exhibit C-3 ALS Group USA, Corp dba ALS Environmental

2.0

1.0

1

1

www.alsglobal.com

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	Terracon 21905 - 64th Ave W Mountlake Terrace	/, Suite 100 WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	8/2/2016 EV16070152 EV16070152-01	
CLIENT CONTACT:	Mike Noll		DATE RECEIVED:	07/27/2016	
CLIENT PROJECT:	81165045		COLLECTION DATE:	7/27/2016 12:51:00	PM
CLIENT SAMPLE ID	B-2-W		WDOE ACCREDITATION:	C601	
		SAMPLE [DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS DATE	ANALYSIS BY
TFT	NWTPH-GX	83.5		07/29/2016	PAB
C25	NWTPH-DX	92.1		07/28/2016	EBS
1,2-Dichloroethane-d4	EPA-8260	97.5		07/29/2016	DLC
Toluene-d8	EPA-8260	101		07/29/2016	DLC
4-Bromofluorobenzene	EPA-8260	88.9		07/29/2016	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental Exhibit C-3

www.alsglobal.com

CERTIFICATE OF	- ANALYSIS	

CLIENT:	Terracon 21905 - 64th Ave \ Mountlake Terrace	on - 64th Ave W, Suite 100 A ake Terrace, WA 98043 ALS S		DATE: ALS JOB#: ALS SAMPLE#:	8/2/2016 EV16070152 EV16070152-02				
CLIENT CONTACT:	Mike Noll		D	DATE RECEIVED:		07/27/2016			
CLIENT PROJECT:	81165045			LECTION DATE:	//2//201	6 1:33:00 F	'M		
CLIENT SAMPLE ID	B-3-W		WDOE AC	CREDITATION:	C601				
		SAMPLE	DATA RESULTS						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY		
TPH-Volatile Range	NWTPH-GX	U	50	1	UG/L	07/29/2016	PAB		
TPH-Diesel Range	NWTPH-DX	U	130	1	UG/L	07/28/2016	EBS		
TPH-Oil Range	NWTPH-DX	U	250	1	UG/L	07/28/2016	EBS		
Dichlorodifluoromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Chloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Vinyl Chloride	EPA-8260	U	0.20	1	UG/L	07/29/2016	DLC		
Bromomethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Chloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Carbon Tetrachloride	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Trichlorofluoromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Carbon Disulfide	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Acetone	EPA-8260	U	25	1	UG/L	07/29/2016	DLC		
1,1-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Methylene Chloride	EPA-8260	U	5.0	1	UG/L	07/29/2016	DLC		
Acrylonitrile	EPA-8260	U	10	1	UG/L	07/29/2016	DLC		
Methyl T-Butyl Ether	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1-Dichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
2-Butanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
2,2-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Bromochloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Chloroform	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1,1-Trichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2-Dichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Trichloroethene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Dibromomethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Bromodichloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Trans-1,3-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
4-Methyl-2-Pentanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC		
Toluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Cis-1,3-Dichloropropene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1,2-Trichloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
2-Hexanone	EPA-8260	U	10	1	UG/L	07/29/2016	DLC		
1,3-Dichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Tetrachloroethylene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		

Page 5

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Mike Noll 81165045 D B-3-W SAMF		DATA RESULTS	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			8/2/2016 EV16070152 EV16070152-02 07/27/2016 7/27/2016 1:33:00 PM C601		
			DATA NEODETO						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION	UNITS	ANALYSIS DATE	ANALYSIS		
Dibromochloromethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2-Dibromoethane	EPA-8260	U	0.010	1	UG/L	07/29/2016	DLC		
Chlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1,1,2-Tetrachloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Ethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
m,p-Xylene	EPA-8260	U	4.0	1	UG/L	07/29/2016	DLC		
Styrene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
o-Xylene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Bromoform	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Isopropylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,1,2,2-Tetrachloroethane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2,3-Trichloropropane	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Bromobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
N-Propyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
2-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,3,5-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
4-Chlorotoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
T-Butyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2,4-Trimethylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
S-Butyl Benzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
P-Isopropyltoluene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,3-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,4-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
N-Butylbenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2-Dichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	10	1	UG/L	07/29/2016	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Hexachlorobutadiene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Naphthalene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	2.0	1	UG/L	07/29/2016	DLC		
Mercury	EPA-245.1	U	0.20	1	UG/L	07/28/2016	RAL		
Arsenic	EPA-200.8	1.7	1.0	1	UG/L	07/28/2016	RAL		
Cadmium	EPA-200.8	U	1.0	1	UG/L	07/28/2016	RAL		
Chromium	EPA-200.8	U	2.0	1	UG/L	07/28/2016	RAL		
Lead	EPA-200.8	U	1.0	1	UG/L	07/28/2016	RAL		

SURROGATE	METHOD	%REC
TFT	NWTPH-GX	83.5

ANALYSIS ANALYSIS DATE BY

07/29/2016	PAB

Page 6

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2620 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

Environmental 🐊

www.alsglobal.com

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	Terracon 21905 - 64th Ave W Mountlake Terrace	/, Suite 100 , WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	8/2/2016 EV16070152 EV16070152-02	
CLIENT CONTACT: CLIENT PROJECT:	Mike Noll 81165045		DATE RECEIVED: COLLECTION DATE:	07/27/2016 7/27/2016 1:33:00	PM
CLIENT SAMPLE ID	D-3-VV	SAMPLE [DATA RESULTS	001	
SURROGATE	METHOD	%REC		ANALYSIS DATE	ANALYSIS BY
C25	NWTPH-DX	100		07/28/2016	EBS
1,2-Dichloroethane-d4	EPA-8260	99.4		07/29/2016	DLC
Toluene-d8	EPA-8260	97.2		07/29/2016	DLC
4-Bromofluorobenzene	EPA-8260	94.0		07/29/2016	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

www.alsglobal.com

CERTIFICATE OF ANALYSIS

CLIENT:	Terracon	DATE:	8/2/2016
	21905 - 64th Ave W, Suite 100	ALS SDG#:	EV16070152
	Mountlake Terrace, WA 98043	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Mike Noll		
CLIENT PROJECT:	81165045		

LABORATORY BLANK RESULTS

MBG-072616W - Batch 106613 - Water by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS	
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY	
TPH-Volatile Range	NWTPH-GX	U	UG/L	50	07/26/2016	PAB	

U - Analyte analyzed for but not detected at level above reporting limit.

MB-072216W - Batch 106552 - Water by NWTPH-DX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Diesel Range	NWTPH-DX	U	UG/L	130	07/22/2016	EBS
TPH-Oil Range	NWTPH-DX	U	UG/L	250	07/22/2016	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-072816W2 - Batch 106694 - Water by EPA-8260

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Dichlorodifluoromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Chloromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Vinyl Chloride	EPA-8260	U	UG/L	0.20	07/28/2016	DLC
Bromomethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Chloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Carbon Tetrachloride	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Trichlorofluoromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Carbon Disulfide	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Acetone	EPA-8260	U	UG/L	25	07/28/2016	DLC
1,1-Dichloroethene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Methylene Chloride	EPA-8260	U	UG/L	5.0	07/28/2016	DLC
Acrylonitrile	EPA-8260	U	UG/L	10	07/28/2016	DLC
Methyl T-Butyl Ether	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1-Dichloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
2-Butanone	EPA-8260	U	UG/L	10	07/28/2016	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
2,2-Dichloropropane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Bromochloromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Chloroform	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1,1-Trichloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1-Dichloropropene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2-Dichloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Benzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Trichloroethene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

Page 8

CLIENT:	Terracon
	21905 - 64th Ave W, Suite 100
	Mountlake Terrace, WA 98043
CLIENT CONTACT:	Mike Noll
CLIENT PROJECT:	81165045

DATE: ALS SDG#: WDOE ACCREDITATION: C601

8/2/2016 EV16070152

CLIENT PROJECT. 8110	00040					
		LABORATO	ORY BLANK RESUL	TS		
MB-072816W2 - Batch 1066	594 - Water by FP	A-8260				
1,2-Dichloropropane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Dibromomethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Bromodichloromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
4-Methyl-2-Pentanone	EPA-8260	U	UG/L	10	07/28/2016	DLC
Toluene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1,2-Trichloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
2-Hexanone	EPA-8260	U	UG/L	10	07/28/2016	DLC
1,3-Dichloropropane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Tetrachloroethylene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Dibromochloromethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2-Dibromoethane	EPA-8260	U	UG/L	0.010	07/28/2016	DLC
Chlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Ethylbenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
m,p-Xylene	EPA-8260	U	UG/L	4.0	07/28/2016	DLC
Styrene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
o-Xylene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Bromoform	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Isopropylbenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2,3-Trichloropropane	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Bromobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
N-Propyl Benzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
2-Chlorotoluene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
4-Chlorotoluene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
T-Butyl Benzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
S-Butyl Benzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
P-Isopropyltoluene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,3-Dichlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,4-Dichlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
N-Butylbenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2-Dichlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2-Dibromo 3-Chloropropane	EPA-8260	U	UG/L	10	07/28/2016	DLC
1,2,4-Trichlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Hexachlorobutadiene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
Naphthalene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC
1,2,3-Trichlorobenzene	EPA-8260	U	UG/L	2.0	07/28/2016	DLC

Page 9

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 Exhibit C-3 ALS Group USA, Corp dba ALS Environmental

CLIENT:	Terracon
	21905 - 64th Ave W, Suite 100
	Mountlake Terrace, WA 98043
CLIENT CONTACT:	Mike Noll
CLIENT PROJECT:	81165045

DATE: 8/2/2 ALS SDG#: EV1 WDOE ACCREDITATION: C60

8/2/2016 EV16070152 C601

LABORATORY BLANK RESULTS

MB-072816W2 - Batch 106694 - Water by EPA-8260

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-279076 - Batch R279076 - Water by EPA-245.1

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Mercury	EPA-245.1	U	UG/L	0.20	07/28/2016	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

MB-072816W - Batch 106635 - Water by EPA-200.8

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Arsenic	EPA-200.8	U	UG/L	1.0	07/28/2016	RAL
Cadmium	EPA-200.8	U	UG/L	1.0	07/28/2016	RAL
Chromium	EPA-200.8	U	UG/L	2.0	07/28/2016	RAL
Lead	EPA-200.8	U	UG/L	1.0	07/28/2016	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

Page 10 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

8/2/2016

C601

EV16070152

CLIENT:	Terracon	DATE:
	21905 - 64th Ave W, Suite 100	ALS SDG#:
	Mountlake Terrace, WA 98043	WDOE ACCREDITATION:
CLIENT CONTACT:	Mike Noll	
CLIENT PROJECT:	81165045	

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 106613 - Water by NWTPH-GX

					LIM	ITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD G	QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	87.6			66.5	122.7	07/26/2016	PAB
TPH-Volatile Range - BSD	NWTPH-GX	89.8	2		66.5	122.7	07/26/2016	PAB

ALS Test Batch ID: 106552 - Water by NWTPH-DX

				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	87.4		67	125.2	07/25/2016	EBS
TPH-Diesel Range - BSD	NWTPH-DX	92.5	6	67	125.2	07/25/2016	EBS

ALS Test Batch ID: 106694 - Water by EPA-8260

					LIN	11.5	ANALYSIS	ANALYSIS BY	
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE		
1,1-Dichloroethene - BS	EPA-8260	107			72.5	136	07/28/2016	DLC	
1,1-Dichloroethene - BSD	EPA-8260	118	10		72.5	136	07/28/2016	DLC	
Benzene - BS	EPA-8260	102			74.7	143	07/28/2016	DLC	
Benzene - BSD	EPA-8260	118	15		74.7	143	07/28/2016	DLC	
Trichloroethene - BS	EPA-8260	103			74.4	141	07/28/2016	DLC	
Trichloroethene - BSD	EPA-8260	119	14		74.4	141	07/28/2016	DLC	
Toluene - BS	EPA-8260	90.1			71.7	139	07/28/2016	DLC	
Toluene - BSD	EPA-8260	102	13		71.7	139	07/28/2016	DLC	
Chlorobenzene - BS	EPA-8260	93.6			73	131	07/28/2016	DLC	
Chlorobenzene - BSD	EPA-8260	108	14		73	131	07/28/2016	DLC	

ALS Test Batch ID: R279076 - Water by EPA-245.1

	·····, _··				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Mercury - BS	EPA-245.1	100			80.6	118	07/28/2016	RAL
Mercury - BSD	EPA-245.1	106	6		80.6	118	07/28/2016	RAL

ALS Test Batch ID: 106635 - Water by EPA-200.8

				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Arsenic - BS	EPA-200.8	93.5		89.1	110	07/28/2016	RAL
Arsenic - BSD	EPA-200.8	94.5	1	89.1	110	07/28/2016	RAL
Cadmium - BS	EPA-200.8	95.9		89.4	109	07/28/2016	RAL
Cadmium - BSD	EPA-200.8	98.4	3	89.4	109	07/28/2016	RAL
Chromium - BS	EPA-200.8	95.8		86.2	107	07/28/2016	RAL
Chromium - BSD	EPA-200.8	97.4	2	86.2	107	07/28/2016	RAL
Lead - BS	EPA-200.8	96.9		87.5	107	07/28/2016	RAL

Page 11

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 Exhibit C-3 ALS Group USA, Corp dba ALS Environmental

CLIENT:	Terracon	DATE:	8/2/2016
	21905 - 64th Ave W, Suite 100	ALS SDG#:	EV16070152
	Mountlake Terrace, WA 98043	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Mike Noll		
CLIENT PROJECT:	81165045		

						(
					LIMITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN MAX	DATE	
Lead - BSD	EPA-200.8	97.8	1		87.5 107	07/28/2016	RAL

LABORATORY CONTROL SAMPLE RESULTS

APPROVED BY

V

Laboratory Director

Page 12 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental Exhibit C-3

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS Environmenta					Ch	ain O	f Cu	stoc							ALS Job	*	Laborator	y Use Or	ly)
Everett, WA 982 Phone (425) 356	e, Suite 100 08 5-2600			Labo	orato	ory A	naly	sis I	Sedi	uest				W	111	ୄୖୄୖ	0	S	ſ
(ALS) Fax (425) 35t http://wv	5-2626 vw.alsglobal.co	E										Date	7/2	116	Page		đ		
PROJECT ID: -815550	45 8	11653	045		ANAL	/SIS RE	QUEST	ED						OTH	ER (Sp	ecify)			
REPORT TO COMPANY: TE TO CO PROJECT MANAGER: MIKE NOL ADDRESS: 21905 69 ABUNTIAKE TE TO PHONE: 425-771-332 PLONE: 425-771-771-771-771-771-771-771-771-771-77	THE FAX: E-MALE MALE	M St 980	100 100 100 100 100 100 100 100 100 100		IWTPH-HCID	TTPH-GX TTPH-GX ⊡ TTEX bv EPA 8021 □		olatile Organic Compounds by EPA 8260	DB \ EDC P\ EbY 8560 (wstet)	0758 APT by EPA 8270	volycyclic Fromatic Hydrocarbons (PAH) by EPA 808.7 []	□ JAT □ Io9 in9 □ 8-ARDA XC-ADTM-slistel	Metals Other (Specify) CLP-Metals VOA Semi-Vol Pest Herbs	Siptar 10/01	×			IUMBER OF CONTRINERS	SECEIVED IN GOOD CONDITION?
R 7_1/	 1/2012	12.12					۲ ۷		3 3 3	S	4 	v Þ	1 	Þ	╀		1	1111	1
1. D-2-W	a11/2011	15:101	20	-		X		Ľ	_		_	4		4			_		
2. B-3-W	7/27/16	13:33	GW	Z	\times	\times		X				X		×					
3.																			
4.																			
5.								-											
G.																			
7.															-				
ø.																			
6						-					_								
10.																			
SPECIAL INSTRUCTIONS																			
SIGNATURES (Name, Chnga) 1. Relinquished By: Received By:2. Relinquished By:	ny Date, Tim	e: Jera	100 1 825	1221	6 3	S		Fuels				AROU Analys	is is in the second s	QUEST Spe	ED in E seify: 」	OTH OTH	s Days' HER: Tertio	ner	
								ن ا	5	с С		₽≻Ì			ш	hibit	С-3		

*

*Turnaround request less than standard may incur Rush Charges

Exhibit C-3

Received By:__

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

			✓ Water Initially Encountered ✓ Water Level After a Specified Period of Time		N (HP)	Standard Penetration Test Resistance (Blows/Ft.) Hand Penetrometer
ЫG	Standard	EVEL	Water Level After a Specified Period of Time	ESTS	(T)	Torvane
MPL	Penetration Test	TER L	Water levels indicated on the soil boring logs are the levels measured in the		(DCP)	Dynamic Cone Penetrometer
S/		VA	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils	빌	(PID)	Photo-Ionization Detector
			accurate determination of groundwater levels is not possible with short term water level observations.		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY (More than 50% Density determined by	OF COARSE-GRAINED SOILS retained on No. 200 sieve.) Standard Penetration Resistance	Consiste visual	CONSISTENCY OF FINE-GRAINED (50% or more passing the No. 200 s ency determined by laboratory shear strr -manual procedures or standard penetri	SOILS sieve.) ength testing, field ation resistance
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (psf)	Standard Penetration or N-Value Blows/Ft.
Η	Very Loose	0 - 3	Very Soft	less than 500	0 - 1
NGT	Loose	4 - 9	Soft	500 to 1,000	2 - 4
IRE	Medium Dense	10 - 29	Medium Stiff	1,000 to 2,000	4 - 8
S.	Dense	30 - 50	Stiff	2,000 to 4,000	8 - 15
	Very Dense	> 50	Very Stiff	4,000 to 8,000	15 - 30
			Hard	> 8,000	> 30

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s)	
of other constituents	5

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Major Component of Sample Boulders Cobbles Gravel Sand Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High

Plasticity Index

	UNIFIED	SOIL CLASS	SIFICATION SY	STEM						
						Soil Classification				
Criteria for Assign	ning Group Symbols	and Group Names	s Using Laboratory	Tests ^A	Group Symbol	Group Name ^B				
	Gravels:	Clean Gravels:	$Cu \geq 4$ and $1 \leq Cc \leq 3^{E}$		GW	Well-graded gravel F				
	More than 50% of	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F				
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or M	1H	GM	Silty gravel ^{F,G,H}				
Coarse Grained Soils:	on No. 4 sieve	More than 12% fines ^c	Fines classify as CL or C	Ή	GC	Clayey gravel F,G,H				
on No. 200 sieve	Sands:	Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand				
	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3	E	SP	Poorly graded sand				
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or M	ИH	SM	Silty sand G,H,I				
	sieve	More than 12% fines ^D	Fines classify as CL or C	H	SC	Clayey sand G,H,I				
		Inorganic	PI > 7 and plots on or ab	ove "A" line ^J	CL	Lean clay ^{K,L,M}				
	Silts and Clays:	morganic.	PI < 4 or plots below "A"	line ^J	ML	Silt ^{K,L,M}				
	Liquid limit less than 50	Organia	Liquid limit - oven dried	< 0.75	0	Organic clay ^{K,L,M,N}				
Fine-Grained Soils:		Organic.	Liquid limit - not dried	< 0.75	UL	Lean clay ^{K,L,M} Silt ^{K,L,M} Organic clay ^{K,L,M,N} Organic silt ^{K,L,M,O}				
No. 200 sieve		Inorgania	PI plots on or above "A" I	ine	СН	Fat clay ^{K,L,M}				
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt K,L,M				
	Liquid limit 50 or more	Organic	Liquid limit - oven dried	< 0.75	ОЦ	Organic clay ^{K,L,M,P}				
		Organic.	Liquid limit - not dried	< 0.75		Organic silt K,L,M,Q				
Highly organic soils:	Primarily	organic matter, dark in c	color, and organic odor		PT	Peat				

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- $^{\rm I}$ If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \ge 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

llerracon

APPENDIX D SLUG TESTING

Slug Test Description

Terracon performed field slug tests in two monitoring wells (B-2 and B-3) in order to calculate the estimated hydraulic conductivity of the aquifer. Each slug test was performed in general accordance with applicable guidelines (USGS, 2010). Before slug testing commenced, an Instrumentation Northwest P2X transducer was suspended approximately 1 foot from the bottom of the well. A 5-foot long slug fabricated from 1-inch nominal diameter schedule 40 PVC pipe was then quickly submerged in the well until reaching near-steady state conditions (i.e. slug-in or falling-head test). Upon reaching near-steady state conditions, the slug was quickly elevated above the water column and removed from the well (i.e. slug-out or rising-head test). The water level recovery was recorded using the pressure transducer and was monitored until sufficient recovery had been observed (approximately 95%). Typically, three slug-out tests were performed at each well. Slug test data was downloaded from the pressure transducers and saved to a handheld Model Demand field computer.

Raw data was extracted from the transducers using Aqua4Plus software. Prior to conducting analysis, slug test data was processed to yield displacement (feet) and elapsed time (second) for each test. This was calculated from the difference of the pre-test water level from the maximum (or minimum) water elevation and by verifying the accuracy of the timestamp prior to commencing the tests.

Aquifer parameters and well construction details were obtained based on information from the boring well development logs. Among the required input parameters is an estimate of the depth to the next confining unit. According to regional geologic information and boring log HWA-MW-7 advanced at the adjacent Shoreline North Maintenance Facility for the Brightwater Outfall, the confining was estimated to be approximately 237 feet below ground surface (bgs) throughout the project area.

Hydraulic conductivity was subsequently estimated using Aqtesolv Pro software and the Bouwer and Rice solution (Bouwer, H. and R.C. Rice, 1976). This method is widely used and suitable for wells screened in unconfined aquifers that partially or fully penetrate the aquifer. It can also be used if the well screen is only partially submerged.

A summary of hydraulic conductivity (K) values obtained from the slug tests is presented on Table D-1 and the Aqtesolv Slug Test Summary Sheets are provided in this appendix.

References:

- United States Geological Survey (USGS), 2010, GWPD 17—Conducting an Instantaneous Change in Head (Slug) Test with a Mechanical Slug and Submersible Pressure Transducer.
- Bouwer, Herman, and Rice, R.C., 1976, A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, v. 12, no. 3, p. 423–428.

Hydraulic Conductivity Summary

												Aqtes	olv Input				Aqtesc	lv Output
Well ID	Date Slug Test Completed	Type (Falling Head or Rising Head)	DTB (ft bgs)	Static DTW (ft bgs)	Well Casing Diameter (inches)	Borehole Diameter (inches)	Depth to Bottom Confining Layer (ft bgs)	Lithology in screened interval	Initial Displacem ent H ₀ (ft)	Static Water Column Height H (ft)	Sat Thickness Aquifer b (ft)	Depth to top of well screen d (ft)	Length of Screen (ft)	Casing Radius r(c) (ft)	Downhole Equip. Radius (ft)	Well Radius (including filter pack) (ft)	K (ft/d)	Arith. Mean K (ft/d)
	7/25/2016	FH							1.50								17.91	
	7/25/2016	RH							1.47								18.22	
B2	7/25/2016	FH	10 5	1 07	2	Q	237	Silty Gravel / Silty Sand	1.09	17 53	235.03	7 5 3	10	0.083	0.010	0 333	10.75	18 60
DZ	7/25/2016	RH	17.5	1.77	2	0	237	Sinty Graver / Sinty Sand	1.44	17.55	230.03	1.00	10	0.003	0.010	0.000	26.37	10.07
	7/25/2016	FH							1.39								12.73	
	7/25/2016	RH							1.47								26.15	
	7/25/2016	FH							1.38								12.58	
	7/25/2016	RH							1.63								13.76	
R3	7/25/2016	FH	18 75	2 85	2	Q	227	Silty Gravel / Silty Sand	1.99	15 00	22/ 15	5 00	10	0.083	0.010	0 333	12.87	12.0/
00	7/25/2016	RH	10.75	2.05	2	0	237	Silly Graver / Silly Saliu	1.64	13.70	234.15	5.70	10	0.005	0.010	0.555	12.03	12.74
	7/25/2016	FH							1.72								11.54	
	7/25/2016	RH							1.59								14.83	

Notes:

DTB - Depth to bottom

DTW - Depth to water

K - hydraulic conductivity

Isotropic conditions were assumed in all directions (Kv/Kh = 1).

No well/borehole skin was assumed. Wells were assumed properly developed.

All three wells have fully submerged well screens (no correction necessary).

Depth to bottom confining unit based on boring log for MW-4 (fat clay at 237 ft). At MW-3, clay is at 202 ft, at MW-5 at 196 ft.

Maximum calculated displacement assuming a 5 foot long 1-inch nominal diameter Schedule 40 PVC (1.315-inch OD) slug and a 2-inch ID PVC well casing is 2.16 feet.

Terracon

APPENDIX E BORINGS BY OTHERS

Boring and Test Pit Legend

Page 1 of 2

	Sampler Symbols
	Standard Penetration Test
	Non-Standard Sized Penetration Test
	Shelby Tube
P	Piston Sample
	Washington Undisturbed
	Vane Shear Test
	Core
	Becker Hammer
В	Bag Sample

	Well Symbols
	Cement Surface Seal
	Piezometer Pipe in Granular Bentonite Seal
0 0 0 0	Piezometer Pipe in Sand
	Well Screen in Sand
	Granular Bentonite Seal
	Inclinometer Casing or PVC Pipe in Cement Bentonite Grout
••••	Sand
	Vibe Wire in Grout
	Miscellaneous, noted on boring log

Laboratory Testing Codes

AL Atterberg Limits CD Consolidated Drained Triaxial CN **Consolidation Test** CSS Cyclic Simple Shear CU Consolidated Undrained Triaxial DG Degradation DN Density DS Direct Shear Test DSS **Direct Simple Shear** GS Grain Size Distribution ΗT Hydrometer Test LA LA Abrasion LOI Loss on Ignition MC Moisture Content ΡT Point Load Compressive Test RM **Resilient Modulus** RS **Ring Shear Test** SG Specific Gravity SL Slake Test UC **Unconfined Compression Test** UU Unconsolidated Undrained Triaxial

	Soil Der	sity Mo	difiers
Gravel,	Sand & Non-plastic Silt	Elasti	c Silts and Clay
SPT Blows/ft	Density	SPT Blows/ft	Consistency
0-4	Very Loose	0-1	Very Soft
5-10	Loose	2-4	Soft
11-24	Medium Dense	5-8	Medium Stiff
25-50	Dense	9-15	Stiff
>50	Very Dense	16-30	Very Stiff
	Befueel	31-60	Hard
	Reiusai	>60	Very Hard

	Angularity of Gravel & Cobbles
Angular	Coarse particles have sharp edges and relatively plane sides with unpolished surfaces.
Subangular	Coarse grained particles are similar to angular but have rounded edges.
Subrounded	Coarse grained particles have nearly plane sides but have well rounded corners and edges.
Rounded	Coarse grained particles have smoothly curved sides and no edges.

	Soil Moisture Modifiers
Dry	Absence of moisture; dusty, dry to touch
Moist	Damp but no visible water
Wet	Visible free water

	Soil Structure
Stratified	Alternating layers of varying material or color at least 6mm thick; note thickness and inclination.
Laminated	Alternating layers of varying material or color less than 6mm thick; note thickness and inclination.
Fissured	Breaks along definite planes of fracture with little resistance to fracturing.
Slickensided	Fracture planes appear polished or glossy, sometimes striated.
Blocky	Cohesive soil that can be broken down into smaller angular lumps which resist further breakdown.
Disrupted	Soil structure is broken and mixed. Infers that material has moved substantially - landslide debris.
Homogeneous	Same color and appearance throughout.

	HCI Reaction
No HCI Reaction	No visible reaction.
Weak HCI Reaction	Some reaction with bubbles forming slowly.
Strong HCI Reaction	Violent reaction with bubbles forming immediately.

Degree of '	Vesicularity of Pyroclastic Rocks
Slightly Vesicular	5 to 10 percent of total
Moderately Vesicular	10 to 25 percent of total
Highly Vesicular	25 to 50 percent of total
Scoriaceous	Greater than 50 percent of total

Department of Transportation Boring and Test Pit Legend

Page 2 of 2

Grain Size

Fine Grained	< 0.04 in	Few crystal boundaries/grains are distinguishable in the field or with hand lens.	
Medium Grained	0.04 to 0.2 in	Most crystal boundaries/grains are distinguishable with the aid of a hand lens.	
Coarse Grained	> 0.2 in	Most crystal boundaries/grains are distinguishable with the naked eye.	

	Weathered State	
Term	Description	Grade
Fresh	No visible sign of rock material weathering; perhaps slight discoloration in major discontinuity surfaces.	I
Slightly Weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than its fresh condition.	п
Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to soil. Fresh or discolored rock is present either as a continuous framework or as core stones.	ш
Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to soil. Fresh or discolored rock is present either as discontinuous framework or as core stone.	IV
Completely Weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.	V
Residual Soil	All rock material is converted to soil. The mass structure and material fabric is destroyed. There is a large change in volume, but the soil has not been significantly transported.	VI

Relative Rock Strength

Grade	Description	Field Identification	Uniaxial Compressive Strength approx
R1	Very Weak	Specimen crumbles under sharp blow from point of geological hammer, and can be cut with a pocket knife.	0.15 to 3.6 ksi
R2	Moderately Weak	Shallow cuts or scrapes can be made in a specimen with a pocket knife. Geological hammer point indents deeply with firm blow.	3.6 to 7.3 ksi
R3	Moderately Strong	Specimen cannot be scraped or cut with a pocket knife, shallow indentation can be made under firm blows from a hammer.	7.3 to 15 ksi
R4	Strong	Specimen breaks with one firm blow from the hammer end of a geological hammer.	15 to 29 ksi
R5	Very Strong	Specimen requires many blows of a geological hammer to break intact sample.	Greater than 29 ksi

Discontinuities

S	pacing	Condition						
Very Widely	Greater than 10 ft	Excellent	Very rough surfaces, no separation, hard discontinuity wall					
Widely	3 ft to 10 ft	Good	Slightly rough surfaces, separation less than 0.05 in, hard					
Moderately	1 ft to 3 ft		discontinuity wall.					
Closely	2 inches to 12 inches	Fair	Slightly rough surfaces, separation greater than 0.05 in, soft discontinuity wall.					
Very Closely	Less than 2 inches							
R	QD (%)	Poor	Slickensided surfaces, or soft gouge less than 0.2 in thick, or open discontinuities 0.05 to 0.2 in.					
100(length of c Leng	core in pieces > 100mm) th of core run	Very Poor	Soft gouge greater than 0.2 in thick, or open discontinuities greater than 0.2 in.					

Fracture Frequency (FF) is the average number of fractures per 1 ft of core. This does not include mechanical breaks caused by drilling or handling.

Datum: NAD 83/91 HARN = North American Datum of 1983/1991 High Accuracy Reference Network NAVD88 = North American Vertical Datum of 1988 SPN (ft) = State Plane North (ft) SPS (ft) = State Plane South (ft) Exhibit E-1

7		Washington State Department of Transp	ortation		LO	ig of	TEST	BORING Start Card <u>SE-57728 / AE-</u> 3644	3	
	Joh No	DMA-177	SR	104		Elev	ation 218	5.4 ft HOLE No. <u>H-1-16</u>		
		OD101 Oakian Daal				2000		Sheet <u>1</u> of <u>3</u>		0507
	Project	SK104 Gabion Rock	vvai Emerg	jency Repair				Driller <u>Fetterly, Jamie</u>	Lic#_	2507
Com	ponent							Inspector Harvey, Thomas #25	99	
	Start	March 14, 2016	_ Completion .	March 14, 20	16	Wel	I ID#	Equipment CME 55 (9C7-1)		
9	Station	A-Line 10+38.86	Offset	4.1 feet righ	nt	— н	ole Dia 4 inches)	Historical SPT Efficiency87.3%		
No	orthing	284337.206	Easting	1279195.08	88	Colle	ected by	Method Mud Rotary		
	Lat	47.7700478	Long	-122.302342	22		Datum <u>NA</u> I	D 83/91 HARN, NAVD88, SPN (ft) Drill Fluid Bentonite		
Depth (ft)	Elevation (ft)		iciency PT (N) re Content 60 80	Blows/6" (N) and/or RQD FF	Sample Type	Sample No. (Tube No.)	Lab Tests	Description of Material	Groundwater	Instrument
	-215.0							· · · · · · · · · · · · · · · · · · ·		
				8 9	Y	D-1		Well graded GRAVEL, sub-rounded, medium dense, gray, wet, homogeneous. HCI not tested.	-	
- - 5 - - -	-210.0			2 1 2 (3)		D-2		No Recovery. HCl not tested.	03-14-2016	
	- 205.0			1 0 1 (1)	X	D-3		Silty SAND with gravel with organic, sub-rounded, very loose, brown, wet, homogeneous, laminated. HCl not tested. Recovered: 0.4 ft Retained: 0.4 ft		
-				1 1 2 (3)		D-4		Silty SAND with gravel with organic, sub-rounded, very loose, dark brown, wet, homogeneous. HCl not tested. Recovered: 0.6 ft Retained: 0.6 ft ESU 2		
- - - 15-	- 200.0	★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓ ★ ↓		6 12 11 (23)	X	D-5		ESU 3 SILT with sand withwell grade sand /gravel/organic, medium dense, gray, wet, stratified. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft	- - -	
-				9 15 16 (31)	X	D-6		Poorly graded SAND trace gravel, dense, gray, wet, homogeneous. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft	-	
				7 14 21 (35)	X	D-7		Silty SAND trace silt, dense, gray, wet, homogeneous, laminated. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft		

ENTERPRISE BORING LOG DMA-177 104 GABION WALL FAILURE.GPJ ENTERPRISE DATA TEMPLATE.GDT 4/5/16

LOG OF TEST BORING

	Job No.	DMA-1	77	SF	a <u>104</u>			Ele	evatio	on	215	5.4 ft HOLE No. <u>H-1-16</u>		
	Project	SR104	Gabion Ro	ock Wall	Emergenc	y Repair						Driller Fetterly, Jamie		
Depth (ft)	Elevation (ft)	Profile	 ● SPT ◆ Fiel ● Mo ☑ RC 20 	Efficienc d SPT (N sture Cor D 40 60	y) ntent) 80	Blows/6" (N) and/or RQD FF	Sample Type	Sample No.	(1006 100.)	Lab T	I ests	Description of Material	Groundwater	Instrument
-	— 195 - _													
	- , 190	× × × × × ×				15 16 18 (34)		D-8				SILT with sand, dense, gray, moist, stratified, laminated. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft		
-		* * * * * * *				11 12 12		D-9				SILT with sand, medium dense, gray, wet, stratified, laminated. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft	-	
30	- - 185 -	× × × × × × × × ×				(24)								
- 35—	- 	× × × × × × × ×				7 9 12 (21)	X	D-10				Sandy SILT trace gravel, medium dense, gray, moist, homogeneous, laminated. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft		
-		* * * * * *				6 11 13	X	D-11				Sandy SILT, medium dense, gray, moist, homogeneous, laminated. HCl not tested. Recovered: 1.5 ft Retained: 1.5 ft		
40 — - -	- - 175 -	* * * * * *				(24)								
	-		•			7 12 15 (27)	X	D-12	2			Sandy SILT with gravel, sub-rounded, dense, gray, moist, homogeneous, laminated. HCI not tested. Recovered: 1.5 ft Retained: 1.5 ft		

ENTERPRISE BORING LOG DMA-177 104 GABION WALL FAILURE.GPJ ENTERPRISE DATA TEMPLATE.GDT 4/5/16

45

Job No. DMA-177

Elevation _____215.4 ft

104

SR

HOLE No. H-1-16

Sheet 3 of 3

Project_SR104 Gabion Rock Wall Emergency Repair Driller Fetterly, Jamie SPT Efficiency ۲ Blows/6" (N) and/or Sample Type Elevation (ft) Sample No. Groundwate (Tube No.) Field SPT (N) Instrument Depth (ft) Profile Tests Lab 4 Moisture Content Description of Material RQD FF \square RQD 20 40 60 80 170 7 D-13 Sandy SILT, dense, gray, moist, homogeneous, laminated. HCl not tested. 10 15 Recovered: 1.5 ft Retained: 1.5 ft (25)50 165 10 D-14 Sandy SILT, dense, gray, wet, homogeneous, laminated. 14 HCI not tested. 18 Recovered: 1.5 ft Retained: 1.5 ft (32)55 160 ENTERPRISE BORING LOG DMA-177 104 GABION WALL FAILURE GPJ ENTERPRISE DATA TEMPLATE GDT 4/5/16 ٠ 8 D-15 SILT trace sand, dense, gray, wet, homogeneous, 13 laminated. HCI not tested. 16 Recovered: 1.5 ft Retained: 1.5 ft (29)60-The implied accuracy of the borehole location - 155 information displayed on this boring log is typically sub-meter in (X,Y) when collected by the HQ Geotech Office and sub-centimeter in (X,Y,Z) when collected by the Region Survey Crew. End of test hole boring at 59.5 ft below ground elevation. This is a summary Log of Test Boring. Soil/Rock descriptions are derived from visual field identifications and laboratory test data. Note: REF = SPT Refusal 65-- 150 Bail/Recharge test: Hole Diameter: 4 Depth of boring during bail test: 59.5' Depth of casing during bail test: 54' Bailed bore hole water level to 7.9' Recharge after 5 minutes :6.8' could not bail past7.9 70

HWA GEOSCIENCES INC.

Pro Pro Co	oject: oject l ontract	CS .oca : Nui	l Br tior nbe	ightwat n: King er: E83	er and 004E	Sno	homi	sh Counties	Log	g of	f Bo Shee	o rin et 4 of	g MW- 7 f 5
				SAMPI	ES		<u> </u>				Г	1	1
Elevation,	Depth,	Type	Number	Blows / 6 in. (N)	Recovery, %	Graphic Log	USCS	MATERIAL DESCRI	PTION	Piezometer Schematic	Lab Tests	Moisture Content, %	REMARKS AND OTHER TESTS
-40	170		S-20	74	83		CL	Hard, dark gray with light gray bandle sandy, CLAY, moist. (GLACIOLACUSTRINE, C	- 1gs, slightlý Δpgl) -		M SA AL HA	15.6	
	175	- - \$ -	5-21	92	83		CL	Hard, gray, CLAY interbedded with vo slightly fine gravelly, fine to medium S Hard, dark gray with light gray bandir	ary dense, gray, SAND, moist.		м	16.6	
	180-	- - - - - - -	5-22	15 - 23 - 35 (58)	100			CLAY, moist. High plasticity.	elly, very clavey		M SA AL HA	16.9	
-30	185-	- - - - - - - - -	-23	82	83		30	fine to coarse SAND, moist. Occasion fragments and sub-rounded gravel pr (NONGLACIAL FLUVIAL, C	al wood sesent. ≥pnf) - State Stat		M SA HA	11.3	
	190-	s	-24	78	83		SP- SM	Very dense, gray, slightly silty, gravell coarse SAND, moist.	y, fine to		M SA	12.1	
-20	195-	s	-25	19 - 30 - 51 (81)	100		CL	Hard, gray to dark gray with light gray to coarse gravelly, fine to coarse sand Till-like. (GLACIAOMARINE DRIFT, C	mottling, fine ' y, CLAY, moist. ' - μpgm) -		M SA AL	12.2	
-10	200 - - -	s.	-26	11 - 18 - 27 (45)	100		CL	Very stiff to hard, gray to dark gray with banding, CLAY, moist. (NONGLACIAL LACUSTRINE Two 1-2 mm seams of fine sand prese	, Qpnl) nt at 199 feef.				
	205– -	s-	27	10 • 18 - 32 (50)	100		CL	At 205 feet, soil becomes slightly fine s with several thin light gray sandy seam Hard, gray with light gray flecks, slightl	andy CLAY is. y fine to		M SA AL	18.8	n.
	210-	S -	28	8 - 19 - 40 (59)	100			coarse gravelly, slightly fine to medium moist. -	sandy, CLAY, ************************************		M SA AL	14.5	
U	215-	s-:	29	3 - 15 - 23 (38)	100		CL _	Hard, gray, slightly fine sandy, CLAY, n fine to coarse gravel.	noist. Trace		M SA AL	19.3	
	220- -	S-:	30 8	3 - 16 - 19 (35)	100		СН _	Hard, dark gray with light gray streaks, gravelly, CLAY, moist. Highly plastic.	slightly fine		M	20.6	
10 	225	<u>.</u>					F	At 225 feet, clay becomes very stiff and gray to white vertically oriented laminat	contains light ions.				

HWA HWA GEOSCIENCES INC.

1

Exhibit E-3

Pro	Project: CSI Brightwater Log of Boring MW- 7 Project Location: King and Snohomish Counties												
Co	Contract Number: E83004E												
\square		٦		SAMPLE	S			· · · · · · · · · · · · · · · · · · ·					
Elevation,	Depth	feet	Type Number	Blows / 6 in. (N)	Recovery, %	Graphic Log	nscs	MATERIAL DESCR	IPTION	Piezometer Schematic	Lab Tests	Moisture Content, %	REMARKS AND OTHER TESTS
	22	9	S-31	6 - 11 - 13 (24) 5 - 5 - 11	100			- - - At 229 feet clay becomes highly fra	tured.		M SA AL HA M	31.8	
20	23	0	S-32	(16)	100			Abundant white to light gray seams a oriented laminations.	and randomly		SA		
	23	5	S-33	8 - 9 - 14 (23)	100		CL	- - _ Very stiff, dark gray with white lamin:	ations, CLAY,		M SA AL HA	29.7	
30	24	00 -1 - -	S-34	5-9-11 (20)	100				-		M SA AL HA	26.5	
	24	5	S-35	5-7-14 (21)	100		сн	Very stiff, dark gray with white lamina moist. Highly plastic.	ations, CLAY,		M SA AL	31.3	
40	25 [.]	0-1 - - - -	S-36	6-9-12 (21)	100			-	-		SA HA	32.1	
100 m 100	25	5	S-37	6 - 8 - 10 (18)	100		CL	Very stiff, gray with ligh gray laminat moist.	ions, CLAY,		M SA AL HA	26.7	
	26	0	S-38	5 - 7 - 11 (18)	100		СН	Very stiff, gray with light gray laminat moist. Highly plastic.	ions, CLAY, _		SA	31.8	
	26	5-1	S-39	5-8-9 (17)	100			At 265 feet, no laminations noted.			M SA AL	33.3	
60	27) 						Bottom of boring at 266,5 feet. 2" piezometer installed to 265 feet. Vibrating Wire Plezometer installed a					
	27	5						- - - -	 - - -				-
70	28) 						-	-	-			
L			_										Exhibit E-3

Appendix I.2 Groundwater Monitoring Data

Memorandum

Date:	August 7, 2017
То:	Mike Giseburt, P.E. Louis Berger, Inc.
From:	Tori Hesedahl, P.E.
Subject:	Groundwater Level Readings 25 th Avenue NE Flood Reduction Shoreline, Washington Terracon Project No. 81165045

Terracon Consultants, Inc. (Terracon) presented findings from our Phase I preliminary geotechnical engineering services for the above referenced project in our report *Draft Preliminary Geotechnical Engineering Report, 25th Avenue NE Flood Reduction, Shoreline, Washington,* dated September 6, 2016. Subsurface and hydrologic exploration and services completed included the installation of 3 piezometers along the proposed alignment, on the west side of 25th Avenue NE. Piezometer locations are shown on the attached Site and Exploration Plan from our 2016 report. Groundwater level measurements were taken on several occasions in July 2016, and on 3 occasions in 2017. Data collected in 2016 and 2017 is presented in the table below.

	B-1	B-2	B-3
Ground Surface	219.0	215.0	213.0
5-Jul-2016			
(At time of drilling)	211.50	210.00	208.00
11-Jul-2016	217.40	213.20	210.20
25-Jul-2016		213.00	210.10
27-Jul-2016		213.28	210.42
24-Feb-2017	217.97	214.22	211.02
2-May-2017	218.37	214.25	211.10
7-Jul-2017	217.73	212.99	210.00
Groundwater levels presented are elevations in feet. Ground surface elevations were inferred from a			
topographic site plan provided by Lous Berger.			

Appendix I.3 Supplemental Geotechnical Investigations at North Maintenance Facility Site

Supplemental Environmental Limited Site Investigation

Proposed Constructed Wetland at Proposed Shoreline North Maintenance Facility Site 19547 25th Avenue NE Shoreline, Washington

> August 7, 2017 Terracon Project No. 81165045

Prepared for: Louis Berger U.S. Inc. Seattle, Washington Prepared by: Terracon Consultants, Inc. Mountlake Terrace, Washington

August 7, 2017

Louis Berger U.S. Inc. 520 Pike Street, Suite 1005 Seattle, Washington 98101

Attn: Michael Giseburt Telephone: (206) 453-1549 E-mail: mgiseburt@louisberger.com

Re: Supplemental Environmental Limited Site Investigation Proposed Constructed Wetland at Proposed Shoreline North Maintenance Facility Site 19547 25th Avenue NE Shoreline, King County, Washington Terracon Project No. 81165045

Dear Mr. Giseburt:

Terracon Consultants, Inc. (Terracon) is pleased to submit our report of Supplemental Environmental Limited Site Investigation (Supplemental Environmental LSI) activities completed at the site referenced above. The report presents data from recent field activities that included the completion of soil borings and the collection of soil samples for chemical analysis. Terracon conducted the Supplemental Environmental LSI in general accordance with our proposal (P81177327) dated June 1, 2017 and the Modification of Subcontract/Agreement between Louis Berger U.S. Inc. and Terracon dated June 12, 2017.

Please review and provide comments or authorization to finalize the Supplemental Environmental LSI report. Terracon appreciates this opportunity to provide environmental services to Louis Berger U.S. Inc. and the City of Shoreline. Should you have any questions or require additional information, please do not hesitate to contact our office.

Sincerely, Terracon Consultants, Inc.

Carol Lybeer Senior Project Manager

Dennis R. Stettler. P.E. Senior Geotechnical Consultant

Michael D. Noll, L.G., L.Hg. Senior Project Manager

Terracon Consultants, Inc. 21905 64th Avenue West Suite 100 P (425) 771 3304 F (425) 771 3549

Mountlake Terrace, Washington 98043 terracon.com
Terracon

TABLE OF CONTENTS

1.0	SITE [DESCRIPTION	1
2.0	SCOP	E OF SERVICES	2
	2.1	Standard of Care	2
	2.2	Additional Scope Limitations	2
	2.3	Reliance	3
3.0	FIELD	INVESTIGATION	3
	3.1	Geophysical Survey	3
	3.2	Soil Sampling	4
4.0	RESU	LTS OF THE FIELD INVESTIGATION	5
	4.1	Geology/Hydrogeology	5
	4.2	Field Screening	5
5.0	ANAL	YTICAL RESULTS	5
	5.1	Gasoline-, Diesel-, and Oil-Range TPH Analytical Results	6
	5.2	VOC Analytical Results	7
6.0	INVES	STIGATION DERIVED WASTE	7
7.0	FINDI	NGS AND CONCLUSIONS	7
8.0	RECO	MMENDATIONS1	0

APPENDIX A – EXHIBITS

Exhibit 1 – Topographic Map Exhibit 2 – Site Diagram

APPENDIX B – TABLE

Table 1 - Summary of Soil Analytical Results

APPENDIX C – SOIL BORING LOGS

Boring Logs for WB1 through WB12

APPENDIX D – ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM

APPENDIX E – TABLE 12.1 GUIDELINES FOR REUSE OF PETROLEUM-CONTAMINED SOIL

Supplemental Environmental Limited Site Investigation

Proposed Constructed Wetland at Proposed Shoreline North Maintenance Facility Site 19547 25th Avenue NE Shoreline, King County, Washington Terracon Project No. 81165045 August 7, 2017

1.0 SITE DESCRIPTION

The site consists of an approximately 2.87-acre tract of land located at 19547 25th Avenue NE in Shoreline, King County, Washington, and is occupied by a City of Shoreline road maintenance facility, formerly the Brugger's Bog King County Maintenance Facility. The road maintenance facility has reportedly operated since the late 1950s. The site includes a covered vactor waste decant facility, a fleet vehicle fueling area, and a construction materials and equipment storage yard. Additional site improvements include an office/garage building, truck scale, and various outbuildings. The site is paved with asphalt and/or concrete, with some areas of gravel surfacing, and some landscaping and vegetation along the site borders. A Topographic Map showing the site location is included as Exhibit 1 and a Site Diagram is included as Exhibit 2 in Appendix A.

Terracon completed an Environmental Limited Site Investigation (Environmental LSI) at the site in January 2016 for TCF Architecture PLLC, and presented the results in a report dated February 24, 2016. As part of that investigation, five soil borings (B1 through B3, MW1, and GB1) were advanced in the northeast portion of the site and soil samples were collected for analysis. Gasoline- and diesel-range total petroleum hydrocarbon (TPH) were detected in the soil sample collected from boring B1 at 3 feet below the ground surface (bgs) at concentrations exceeding the Washington State Model Toxics Control Act (MTCA) Method A cleanup levels. Diesel- and oil-range TPH were detected in the soil samples collected from borings MW1 and GB1 at 3.5 and 2.5 feet bgs, respectively, but at concentrations below the MTCA Method A cleanup levels. A summary of Environmental LSI soil sample results from select borings are summarized in Table 1 in Appendix B.

As a part of planned improvements to drainage and flood reduction along 25th Avenue NE, one of the alternatives under consideration is to route Ballinger Creek through a constructed wetland to be constructed on the east side of the site. Louis Berger U.S. Inc. (Louis Berger) (Client) requested a proposal for a Supplemental Environmental LSI to further characterize shallow soils at the site in an area of the potential future constructed wetland. Please refer to Exhibit 2 for a depiction of site features.

Proposed Shoreline North Maintenance Facility Shoreline, Washington August 7, 2017 Terracon Project No. 81165045

2.0 SCOPE OF SERVICES

Terracon's scope of services included completion of the following tasks:

- Perform pre-mobilization activities including public and private underground utility clearances and preparation of a site specific health and safety plan;
- Advance 12 soil borings and collect soil samples from each boring;
- Complete laboratory analyses of soil samples; and
- Prepare this Supplemental Environmental LSI summary report.

The objective of this Supplemental Environmental LSI was to further characterize site soil for concentrations of total petroleum hydrocarbon (TPH) compounds and/or volatile organic compounds (VOCs) that may be excavated and potentially require off-site disposal, or may come into contact with surface water in a constructed wetland and/or day lighted stream. The scope of services was not intended to identify every chemical possibly associated with the site or surrounding facilities or to establish corrective action costs.

2.1 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time. Terracon makes no warranties, either express or implied, regarding the findings, conclusions, or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report. These Supplemental Environmental LSI services were performed in accordance with the scope of services agreed with you, our client, as reflected in our proposal and were not restricted by ASTM E1903-11 *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process.*

2.2 Additional Scope Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of services; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, non-detectable, or not present during these services. We cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this Supplemental Environmental LSI. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations, or exploratory services. The data,

interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

2.3 Reliance

This report has been prepared for the exclusive use of Louis Berger U.S. Inc., and the City of Shoreline and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of Louis Berger U.S. Inc., the City of Shoreline, and Terracon. Any unauthorized distribution or reuse is at Louis Berger U.S. Inc.'s or the City of Shoreline's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the proposal, Supplemental Environmental LSI report, and the Modification of Subcontract/Agreement between Louis Berger U.S. Inc. and Terracon. The limitation of liability defined in the terms and conditions is the aggregate limit of Terracon's liability to Louis Berger U.S. Inc. and all relying parties unless otherwise agreed in writing.

3.0 FIELD INVESTIGATION

Terracon has a commitment to the safety of all its employees. As such, and in accordance with our *Incident and Injury Free®* safety goals, Terracon conducted the fieldwork under a site-specific health and safety plan developed for this project. Work was performed using the Occupational Health and Safety Administration (OSHA) Level D work attire consisting of hard hats, safety glasses, protective gloves, and protective boots. In an effort to locate underground utilities in the work area, Terracon contacted the Washington State Utility Notification Center to arrange for public underground utility clearance at the site. In addition, a private utility location service was subcontracted by Terracon to identify the locations and depths of the various utilities located near the proposed borings.

3.1 Geophysical Survey

On June 16, 2017, Terracon representative Kyle Bennett mobilized to the site with a subcontracted geophysical professional, C-N-I Locates Ltd., to perform a geophysical survey of selected portions of the site. The subcontractor utilized magnetometer survey methods to perform the survey. The purpose of the survey was to attempt to determine the location of possible utilities and/or anomalies near the proposed boring locations.

The geophysical survey consisted of scanning the areas of interest with an electromagnetic (EM) instrument. The geophysical survey was performed in the eastern portion of the property in the potential future constructed wetland area.

The geophysical survey did not reveal subsurface indications of utilities or anomalies near the proposed boring locations.

3.2 Soil Sampling

Field activities were performed throughout the potential future constructed wetland area. A total of 12 soil borings were advanced to approximately 10 feet below ground surface (bgs) using a direct-push technology (DPT) drill rig. Boring locations relative to site features are depicted on Exhibit 2 of Appendix A.

On June 16, 2017, Terracon field representative Kyle Bennett mobilized to the site to oversee the drilling of soil borings. The proposed scope of services stated that up to 10 soil borings or as many as could be completed in one day were to be advanced and sampled. Site conditions allowed for the advancement and sampling of 12 soil borings.

The borings were advanced by Holocene Drilling, a Washington State-licensed driller, using a limited-access, track-mounted DPT drill rig. The 12 borings, identified as soil borings WB1 through WB12, were advanced using a direct-push sampler equipped with disposable acetate sample sleeves. Throughout the drilling operation, soil samples were obtained continuously (to the extent practical) from five-foot long pushes driven into the ground using a 500-foot-pound, percussion hammer. The steel sampling tube was extracted from the hole and the liners were removed and split open. Non-disposable sampling equipment was cleaned using a non-phosphate soap wash and potable water rinse prior to the beginning of the project and before collecting each soil sample.

Terracon field-screened soil samples for organic vapors using a calibrated photoionization detector (PID). This device provides a direct reading in parts per million (ppm) isobutylene equivalents. Upon removal of the sampler from the borehole, Terracon put a portion of each sample in a sealable plastic bag. After a stabilization period, Terracon screened the headspace above the soil using the PID. In addition, select soils were field-screened by a sheen test by placing soil into a shallow bowl containing potable water and observing to see if a sheen was emitted on the top of the water's surface.

The boring logs in Appendix C include the field screening results for each soil boring. Soil samples were collected from the intervals with the highest PID readings or were collected from the capillary fringe (the interval immediately above the observed groundwater depth). Additional soil samples were collected at other depths for field screening purposes.

A total of 12 soil samples, one each from borings WB1 through WB12, were submitted for laboratory analysis. Additional soil samples were collected from each boring and placed on hold at the laboratory for possible analysis, depending on the results of the initial analyzed samples. Soil samples were extracted by hand using disposable gloves and placed directly into laboratory-supplied glassware.

Each sample container was labeled with the project number, date, time, boring number, and sample number. Sample containers were placed in a chilled cooler immediately after sampling, and subsequently transported to ALS Environmental (ALS) in Everett, Washington, a Washington State-accredited laboratory, under strict chain-of-custody procedures.

At the completion of field activities, the borings were decommissioned using bentonite chips hydrated with potable water immediately upon the conclusion of field work for this investigation and capped to approximately match the existing ground surface.

4.0 **RESULTS OF THE FIELD INVESTIGATION**

4.1 Geology/Hydrogeology

In general, Terracon encountered probable fill material consisting of sand and gravel below the pavement to depths ranging from 1.5 to 6 feet bgs. A 1- to 4-foot thick layer of dark brown sandy organic silt, indicative of a relic topsoil, was encountered below the fill to depths ranging from approximately 5 to 8.5 feet bgs. Gray silty sand with gravel and intermittent silty clay lenses was encountered below the relic topsoil, to boring termination depth (approximately 10 feet bgs). Shallow groundwater was encountered in the borings at depth ranging from approximately 1.5 feet bgs. The boring logs attached in Appendix C detail the observed soil stratigraphy.

4.2 Field Screening

PID readings ranged from 0.1 ppm to 12.8 ppm in the soil samples collected from borings WB1 through WB12. A slight sheen was observed in soil samples collected from borings WB5 and WB6 at approximately 4 feet bgs. The sheen appeared to be due to organic-rich soil, and not from petroleum-related impacts. Sheens or other indications of possible chemical impacts were not observed in the remaining soil samples screened. The field screening results are summarized on the boring logs in Appendix C.

5.0 ANALYTICAL RESULTS

The selected soil samples were analyzed for gasoline-, diesel-, and oil-range TPH by Northwest Methods NWTPH-Gx/Dx and VOCs by EPA Method 8260. Soil samples analyzed for gasoline-range TPH and VOCs were collected using EPA Method 5035 sampling kits.

Reported soil concentrations were compared with the Washington Model Toxics Control Act (MTCA) Method A cleanup levels for unrestricted land use, as applicable, established under Chapter 70.105D Revised Code of Washington (RCW) and its implementing regulation, MTCA Chapter 173-340 Washington Administrative Code (WAC). Where a MTCA Method A cleanup

level has not been established for a particular compound, the respective MTCA Method B cleanup level for cancer/non-cancer direct contact is applied for comparison.

In addition to the MTCA Method A or MTCA Method B cleanup levels, detected analyte concentrations were compared to Table 12.1 - Guidelines for Reuse of Petroleum-Contaminated Soil, found in the Washington State Department of Ecology (Ecology) *Guidance for Remediation of Petroleum Contaminated Soils, Toxics Cleanup Program, Publication No. 10-09-057 Revised June 2016.* The significance of these comparisons is discussed further below in Section 7.0.

The laboratory analytical report and chain-of-custody form are attached in Appendix D. The following sections describe the results of the testing.

5.1 Gasoline-, Diesel-, and Oil-Range TPH Analytical Results

Gasoline-range TPH was detected above the MTCA Method A cleanup level of 100 milligrams per kilogram (mg/kg) (when benzene is not present) in the soil sample collected from boring WB7 at 6 feet bgs, at a concentration of 150 mg/kg.

Based on the detection of gasoline-range TPH in the soil sample collected from boring WB7 at 6 feet bgs, the soil sample collected from boring WB7 at 9 feet bgs (which was placed on hold at the laboratory) was analyzed for TPH compounds. Gasoline-range TPH was not detected above the laboratory method reporting limit (MRL) of 3.0 mg/kg in the soil sample collected from boring WB7 at 9 feet bgs.

Gasoline-range TPH was detected above the laboratory MRL of 3.0 mg/kg but below the MTCA Method A cleanup level of 100 mg/kg in soil samples collected from borings WB4 at 1.5 feet bgs, WB8 at 1.5 feet bgs, WB9 at 1.5 feet bgs, and WB10 at 3 feet bgs.

Gasoline-range TPH was not detected above the laboratory MRL of 3.0 mg/kg in the remaining soil samples analyzed.

Diesel-range TPH was detected above the laboratory MRL of 25 mg/kg but below the MTCA Method A cleanup level of 2,000 mg/kg in soil samples collected from borings WB4 at 1.5 feet bgs, WB6 at 4 feet bgs, WB7 at 6 feet bgs, and WB10 at 3 feet bgs.

Diesel-range TPH was not detected above the laboratory MRL of 25 mg/kg in the remaining soil samples analyzed.

Oil-range TPH was detected above the laboratory MRL of 50 mg/kg but below the MTCA Method A cleanup level of 2,000 mg/kg in soil samples collected from borings WB2 at 4.5 feet bgs, WB4 at 1.5 feet bgs, WB6 at 4 feet bgs, WB7 at 6 feet bgs, WB8 at 1.5 feet bgs, WB9 at 1.5 feet bgs, and WB10 at 3 feet bgs.

Oil -range TPH was not detected above the laboratory MRL of 50 mg/kg in the remaining soil samples analyzed.

The soil analytical results are summarized in Table 1 of Appendix B.

5.2 VOC Analytical Results

Concentrations of three VOC analytes were detected in the soil samples analyzed. The three analytes that were detected above laboratory MRLs but below the applicable Method B cleanup levels were acetone, 2-butanone, and chlorobenzene.

Acetone was detected above the laboratory MRL of 0.050 mg/kg but below the MTCA Method B cleanup level of 72,000 mg/kg in soil samples collected from borings WB2 at 4.5 feet bgs, WB3 at 4 feet bgs, WB6 at 4 feet bgs, WB7 at 6 feet bgs, WB10 at 3 feet bgs, and WB12 at 3 feet bgs.

2-Butanone was detected above the laboratory MRL of 0.050 mg/kg but below the MTCA Method B cleanup level of 48,000 mg/kg in the soil sample collected from boring WB6 at 4 feet bgs.

Chlorobenzene was detected above the laboratory MRL of 0.010 mg/kg but below the MTCA Method B cleanup level of 1,600 mg/kg in the soil sample collected from boring WB10 at 3 feet bgs.

Additional VOC analytes were not detected above laboratory MRLs in the soil samples analyzed.

The soil sample analytical results are summarized in Table 1 of Appendix B.

6.0 INVESTIGATION DERIVED WASTE

One 20-gallon drum of drill cuttings was containerized during the field activities. The drum is currently staged onsite at the north perimeter along the existing row of 55-gallon drums. It is Terracon's understanding that the City of Shoreline will arrange for the disposal of the drum contents. Otherwise, Terracon can provide a cost estimate for a subcontractor to transport and dispose of the drums and contents at an off-site facility.

7.0 FINDINGS AND CONCLUSIONS

Based on the scope of services described in this report and subject to the limitations described herein, Terracon concludes the following.

Subsurface soils explored at select areas of the site did not contain concentrations of the analyzed compounds above their respective MTCA cleanup levels, with the exception of a concentration of gasoline-range TPH identified in soil sample WB7-6 collected at 6 feet bgs from the area between the garage/office building and the covered storage area. In addition, a soil sample collected from previous boring B1 at 3 feet bgs contained concentrations of gasoline-and diesel-range TPH exceeding the MTCA Method A cleanup levels.

As stated in Section 5.0 above, soil sample concentrations were also compared to the soil category criteria listed in Table 12.1 - Guidelines for Reuse of Petroleum-Contaminated Soil of Ecology's *Guidance for Remediation of Petroleum Contaminated Soils*. This table provides guidelines for the reuse of petroleum-contaminated soil based on contaminant concentrations. Category 1 soils do not contain contaminants at concentrations above specified laboratory MRLs. Category 2 soils contain one or more contaminants at concentrations above the laboratory MRLs, but below the MTCA cleanup levels. Category 3 and Category 4 soils contain one or more contaminants at higher concentrations, typically above the MTCA cleanup levels. A copy of Table 12.1 is included as Appendix E.

Based on the analytical results for soil samples collected from boring WB7 at 6 feet bgs and previous boring B1 at 3 feet bgs, these soils are Category 4 soils that should be properly disposed offsite at a licensed landfill or asphalt manufacturing plant. Results for soil samples collected from previous borings MW1 and GB1 at depths of 3.5 and 2.5 feet bgs, respectively indicate that soils in these areas are Category 3 soils that can be used for paving base material or road construction.

Results for soil samples collected from borings WB4, WB6, WB8, WB9, and WB10 at depths ranging from 1.5 to 3 feet bgs indicate that soils from these areas are Category 2 soils, which can be used as commercial fill above the groundwater table. As shown on Exhibit 2, the Category 2 soils are situated mainly in the southwestern portion of the potential future constructed wetland area. The remaining sample results indicate that soils in the potential future constructed wetland area are Category 1 soils, which can remain in place or, if excavated for the wetland, can be used onsite or offsite as clean fill.

Ecology's *Guidance for Remediation of Petroleum Contaminated Soils* provides guidance for the reuse of soil from petroleum-contaminated sites. According to Table 12.2, Category 2 soils should not be placed in or directly adjacent to wetlands or surface water where contact with water is possible. Therefore, if site soils are excavated that contain petroleum or VOC detections that exceed Category 1 criteria, the excavated soil should not be used as fill material in an area that will be in contact with groundwater or surface water. However, Ecology's *Guidance for Remediation of Petroleum Contaminated Soils* provides guidance on best management practices for reusing soil from petroleum-contaminated sites, and does not specifically address guidance for soil left in place at sites where a constructed wetland is

anticipated. Based on Terracon's review of Ecology Wetland Mitigation Planning guidance documents, no specific soil cleanup levels have been established for constructed wetlands.

Terracon made a general inquiry to a wetland specialist at Ecology's Northwest Regional Office regarding a conceptual approach for a where petroleum impacts are known and construction of a wetland or day lighting a creek is being contemplated, and soil with residual impacts below MTCA cleanup levels may remain in place and potentially come into direct contact with surface water. The Ecology wetland specialist indicated that soil removal beyond the MTCA cleanup levels should not be necessary, but that Ecology staff in the Toxics Cleanup Program should also be consulted to verify this assumption.

Per the client's request, and with the approval of the City of Shoreline, Terracon provided site data to Ecology to obtain a more definitive answer to determine if soils at the site in the area of the proposed engineered wetland or potential day-lighted creek bed would require remedial cleanup to concentrations below the MTCA cleanup levels, and if so, what the appropriate criteria are for soil with petroleum concentrations left in-place. In discussions with an Ecology site manager in the Toxics Cleanup Program, Ecology apparently does currently not have established cleanup levels for TPH or VOCs in sediments or surface water. The Ecology site manager stated that the most appropriate cleanup standards for the site soil and groundwater would be MTCA Method A cleanup levels. The Ecology site manager stated that if soil grading or excavation do occur at the site, soil samples along the base and sidewalls of the excavation should be collected in accordance with Ecology guidance documents, and that soil concentrations left in place should be documented in order to establish the baseline concentrations that would potentially come into contact with re-directed surface water from the day-lighted creek.

If a wetland is constructed on the property, Terracon understands that soil in the proposed constructed wetland area would be excavated to depths of between 5 and 10 feet bgs. Soil samples collected in the area of the proposed potential wetland area are primarily located above 5 feet bgs, with the exception of WB7 at a depth of 6 feet bgs, which had gasoline-range TPH concentrations above the MTCA Method A cleanup level, and diesel- and oil-range TPH concentrations above the Category 1 and Category 2 criteria. Earthwork activities for wetland construction are likely to remove identified soil impacts that exceed MTCA Method A and Category 1 criteria.

If a wetland is not constructed on the property and the property is developed as a maintenance facility, environmental impacts that exceed MTCA cleanup levels should be addressed to achieve regulatory closure. Soil and groundwater results from the January 2016 Environmental LSI (Terracon report dated February 24, 2016) identified impacts of TPH in soil and groundwater and elevated arsenic concentrations in groundwater above MTCA action levels. Terracon understands that the City of Shoreline reported the presence of impacts to Ecology on August 4, 2017.

Activities to remediate the identified soil and groundwater impacts could include focused soil excavation, long-term groundwater monitoring, and/or implementation of an environmental covenant precluding the use of groundwater from the property and precluding earthwork activities unless additional soil samples are collected.

8.0 **RECOMMENDATIONS**

In the event that Category 1 soil cleanup criteria for soils left in place are determined by Ecology or other regulatory/permitting agencies to apply to a future constructed wetland or creek daylighting project, Terracon recommends that confirmation sampling be conducted during excavation in order to verify that soil above the Category 1 criteria has been successfully removed. Additionally, we recommend that the Ecology *Guidance for Remediation of Petroleum Contaminated Soils* be followed for the proper guidelines for on-site reuse or off-site disposal of any petroleum-contaminated soil.

Terracon also recommends that an environmental media management plan (EMMP) be prepared for the site to address the identified TPH and other impacts that could be encountered during any future earthwork activities conducted at the site. The EMMP will include guidance to the earthwork contractor for the following: health and safety; general contractor/subcontractor environmental qualifications; equipment decontamination; worker exposure, monitoring and field screening of soils; excavation and stockpiling of impacted soils; soil segregation; soil sampling methodology and frequency of testing; remedial excavations; disposition of excavation spoils; dewatering procedures of impacted groundwater; disposition of impacted groundwater; and documentation and reporting. Terracon is available to prepare the EMMP for the project, if desired.

APPENDIX A – EXHIBITS

Exhibit 1 – Topographic Map Exhibit 2 – Site Diagram

APPENDIX B – TABLE

Table 1 – Summary of Soil Analytical Results

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS Proposed Shoreline North Maintenance Facility 19547 25th Ave NE Shoreline, Washington Terracon Project No. 81165045

all concentrations are in milligrams per kilogram (mg/kg)

			TPH			VOCs ¹					
Boring ID	Sample ID	Sample Date	Sample Depth (feet)	Gasoline-Range	Diesel-Range	Oil-Range	Acetone	2-Butanone	Chlorobenzene		
			Januar	y 2016 Environ	mental Limited	Site Investigat	ion				
B1	B1-3'	1/11/2016	3	450	4,800	ND (<500)	ND (<0.050)	ND (<0.050)	ND(<0.010)		
MW1	MW1-3.5'	1/11/2016	3.5	ND (<3.0)	130	330	ND (<0.050)	ND (<0.050)	ND(<0.010)		
GB1/MW4	GB1-2.5'	1/20/2016	2.5	ND (<3.0)	200	510	ND (<0.050)	ND (<0.050)	ND(<0.010)		
		J	lune 2017 S	upplemental Er	vironmental Li	mited Site Inve	stigation				
WB1	WB1-2	6/16/2017	2	ND (<3.0)	ND (<25)	ND (<50)	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB2	WB2-4.5	6/16/2017	4.5	ND (<3.0)	ND (<25)	58	0.72	ND (<0.050)	ND(<0.010)		
WB3	WB3-4	6/16/2017	4	ND (<3.0)	ND (<25)	ND (<50)	0.40	ND (<0.050)	ND(<0.010)		
WB4	WB4-1.5	6/16/2017	1.5	23	58	120	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB5	WB5-9.5	6/16/2017	9.5	ND (<3.0)	ND (<25)	ND (<50)	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB6	WB6-4	6/16/2017	4	ND (<3.0)	25	86	0.50	0.10	ND(<0.010)		
\//B7	WB7-6	6/16/2017	6	150	510	750	0.38	ND (<0.050)	ND(<0.010)		
VVD7	WB7-9	6/16/2017	9	ND (<3.0)	ND (<25)	ND (<50)	ND (<0.050) ND (<0.050)		ND (<0.050) ND (<0.050)		ND(<0.010)
WB8	WB8-1.5	6/16/2017	1.5	13	ND (<25)	140	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB9	WB9-1.5	6/16/2017	1.5	7.1	ND (<25)	200	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB10	WB10-3	6/16/2017	3	7.7	58	180	0.20	ND (<0.050)	0.015		
WB11	WB11-3.5	6/16/2017	3.5	ND (<3.0)	ND (<25)	ND (<50)	ND (<0.050)	ND (<0.050)	ND(<0.010)		
WB12	WB12-3	6/16/2017	3	ND (<3.0)	ND (<25)	ND (<50)	0.43	ND (<0.050)	ND(<0.010)		
MTCA Meth	od A or Met	hod B Clea	nup Level	100 ²	2,000	2,000	72,000*	48,000*	1,600*		
	Soil Cate	egory 1		<5	<25	<100	NA	NA	NA		
	Soil Cate	egory 2		5 - 30	25 - 200	100 - 200	NA	NA	NA		

Note: Concentrations detected above laboratory method reporting limits (MRLs) are in **BOLD** type. Concentrations detected above MTCA cleanup levels are in **BOLD** type and in a shaded cell.

MTCA - Model Toxics Control Act

NA - Not applicable

ND (<MRL) - Not detected above laboratory method reporting limit (MRL)

TPH - Total petroleum hydrocarbons

VOCs - Volatile organic compounds

* - MTCA Method B Cleanup Level - cancer/noncancer direct contact.

1 - Compounds detected above laboratory MRLs listed. See laboratory report for full list of analytes.

2 - Gasoline-range TPH Method A cleanup level is 100 mg.kg when benzene is not present

APPENDIX C – SOIL BORING LOGS

Boring Logs for WB1 through WB12

	BORING LOG NO. WB1						Page 1 of 1				
PF	ROJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	oreline North	CLIENT: Louis Berg Seattle, Wa	ger ashington						
SI	TE:	19547 25th Avenue NE Shoreline, Washington									
GRAPHIC LOG	LOCATIO	N See Exhibit 2		1	DEPTH (ff)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER		
	0.2 ASPH	IALT) WITH SILT (SP-SM), gray, trace gravels, I	no sheen, no odor, mo	ist, (PROBABLE FILL)							
ИЕ.GDT 6/22/17	Beco	mes increasingly course				_					
	2.5	Y ORGANIC SILT WITH GRAVEL (ML) da	ark brown no sheen r	no odor, mojet				12.6	WB1 -2		
			an brown, no bheen, r			_					
RACON	Grade	es to wet									
						-					
16-17.0								1.4			
					5	-					
	5.5 <u>SANE</u>) WITH SILT AND GRAVEL (SP-SM), gray,	no sheen, no odor, we	et							
5045 B(-					
G 8116								<1			
ART LO						1					
TAL SM	8.0										
	SANE	DY GRAVEL (GP), gray, no sheen, no odor,	wet			1					
ORT.						1		<1	WB1 -9		
	10.0				10						
RIGIN	Borin	ng Terminated at 10 Feet									
ROM O											
MATED F	The stratifi	cation lines represent the approximate transition	between differing soil typ	es and/or rock							
Advar Advar	iypes; in-s	itu trese transitions may be gradual or may occul iod:	at univerent depths than s	Notes	3:						
JI Dir	rect Push Tech	nnology									
> LO Abano SI SI S	donment Meth prings backfille	nod: d with bentonite chips upon completion	-								
	WATE			Boring	Started: 6/16/2017 Bor	ing Con	nplete	d: 6/16	/2017		
S BOR		ining	21905 64th A	Drill Rive W Ste 100	g: Geoprobe 7782DT Dril	ler: Holo	ocene				
티			Mountlake	Terrace, WA Project	t No.: 81165045 Ext	ibit:	WB-1				

	BORING LOG NO. WB2						Page 1 of 1					
	PR	OJECT: 25th Avenue NE Drainage-Shore Maintenance Facility Site	line North	CLIENT: Louis Berger Seattle, Washington								
	SIT	E: 19547 25th Avenue NE Shoreline, Washington										
	GRAPHIC LOG	LOCATION See Exhibit 2			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER			
		DEPTH MA	TERIAL DESCRIPTION									
IPLATE.GDT 6/22/17		SAND WITH SILT (SP-SM), gray, trace gravel, no sl Becomes increasingly course	neen, no odor, mois	t, (PROBABLE FILL)	-	-		2.0				
7.GPJ TERRACON_DATATEM		2.5 SANDY ORGANIC SILT WITH GRAVEL (ML), dark	io odor, moist									
6-16-17		Grades to wet						<1	WB2			
WMENTAL SMART LOG 81165045 BORING LOG		<u>SAND WITH SILT AND GRAVEL (SP-SM)</u> , gray, no <u>8.0</u> <u>SANDY GRAVEL (GP)</u> , gray, no sheen, no odor, we	sheen, no odor, we	26		-		<1				
REPORT. ENVIRON					_	_			W/B2			
SINAL F		10.0 Boring Terminated at 10 Feet			10-			<1	-9.5			
ED FROM ORIG												
PARAT		I he stratification lines represent the approximate transition between types; in-situ these transitions may be gradual or may occur at	ween differing soil type different depths than s	es and/or rock shown.								
G IS NOT VALID IF SEI	Advan Dire Aband Bori	cement Method: ct Push Technology comment Method: ngs backfilled with bentonite chips upon completion		Notes:								
NG LO	∇	WATER LEVEL OBSERVATIONS		Boring Started: 6/16/2017	Borir	ig Com	plete	ed: 6/16	/2017			
S BORI	<u> </u>			Drill Rig: Geoprobe 7782DT	Drille	er: Holo	ocene					
THIS	21905 64th Ave W Ste 100 Mountlake Terrace, WA Project No.: 81165045						Exhibit: WB-2					

		BORING LOG NO. WB3						Page 1 of 1				
	PR	OJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	reline North	CLIENT: Louis Seattl	Berger e, Washington						
	SIT	E:	19547 25th Avenue NE Shoreline, Washington			, J						
	GRAPHIC LOG	LOCATIO	N See Exhibit 2				DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER	
		0.2 ASPI SAN	HALT D WITH SILT (SP-SM) grav trace gravels r	no sheen no odor mo	nist (PROBABLE FILL)							
ERRACON_DATATEMPLATE.GDT 6/22/17		1.5 SAN	DY ORGANIC SILT WITH GRAVEL (ML), da	ist	-	-		<1				
GPJ TI							_			1.2	WB3	
6-16-17		Beco	mes increasingly course				-				-4	
MART LOG 81165045 BORING LOGS		5.5 SAN I	<u>D WITH SILT AND GRAVEL (SP-SM)</u> . gray (grades to dark gray, c	ourse sand, no sheen,	no odor, wet	- s -			<1		
INTAL S		8.0					_			<1	WB3 -7.5	
ORT. ENVIRONME	000 0	<u>SILI</u> 8.5 <u>SAN</u>	<u>Y CLAY LENSE (CL-ML)</u> , gray, no sneen, n D WITH SILT AND GRAVEL (SP-SM), gray,	course sand, no shee	n, no odor, wet		_	-				
VAL REF	Po	10.0					10-			<1	WB3 -9.5	
ED FROM ORIGIN		Borii	ng Terminated at 10 Feet									
PARATE		The stratification lines represent the approximate transition between differing soil types and/or rock types; in-situ these transitions may be gradual or may occur at different depths than shown.										
3 IS NOT VALID IF SE	Advand Dire Abando Bori	cement Meti ct Push Tec onment Met ngs backfille	hod: hnology hod: ad with bentonite chips upon completion			Notes:						
ING LOC	∇	WATE	ER LEVEL OBSERVATIONS			Boring Started: 6/16/2017	Borin	g Com	plete	d: 6/16	/2017	
S BOR		winie un		21905 64th A	Ve W Ste 100	Drill Rig: Geoprobe 7782DT	Drille	er: Holo	cene	•		
Ŧ		Mountlake Terrace, WA Project No.: 81165045						oit: ۱	NB-3			

	BORING LOG NO. WB4						Page 1 of 1				
PR	OJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	reline North	CLIENT: Louis Seatt	Berger le, Washington						
SIT	E:	19547 25th Avenue NE Shoreline, Washington									
GRAPHIC LOG	LOCATION	See Exhibit 2				DEPTH (ft)	WATER LEVEL BSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER	
	DEPTH 0.2 ASPH	ALT	MATERIAL DESCRIPTIO	N			-0	S		Ś	
	SAND	<u>₩ITH SILT (SP-SM)</u> , gray, trace gravels, r	no sheen, no odor, mo	iist, (PROBABLE FILL))	_	_				
									<1	WB4	
	Grade	es to wet				_				-1.5	
						_	-		<1		
	5.5 <u>SANC</u>	WITH SILT AND GRAVEL (SP-SM), brown	n to gray, no sheen, n	o odor, wet		5-	-		<1		
	Becor	nes increasingly fine					-				
<mark>``</mark> •	9.0								<1	WB4	
	<u>SILT</u>	<mark>' CLAY (CL-ML)</mark> , gray, no sheen, no odor, ν	vet							0.0	
	Borin	g Terminated at 10 Feet				10-					
	The stratifi types; in-si	cation lines represent the approximate transition to the set transitions may be gradual or may occur	between differing soil typ at different depths than	es and/or rock shown.							
Advan	cement Meth	od:			Notes:						
Dire Abande Bori	onment Meth	nology od: d with bentonite chips upon completion									
<u> </u>	WATE	R LEVEL OBSERVATIONS			Desires Obertada Oldofooda					10047	
\square	While dril	ling	llerr	acon	Drill Rig: Geoprobe 7782DT	Borin		piete	u: 6/16	/2017	
			21905 64th A Mountlake	Ave W Ste 100 Terrace, WA	Project No.: 81165045	Exhit	pit: \	VB-4			

		BORING LOG NO. WB5							Page 1 of 1					
	PR	OJECT: 25th Avenue NE Drainage-Shoreline Nor Maintenance Facility Site	th CLIENT:	Louis Berger Seattle, Washington										
	SIT	E: 19547 25th Avenue NE Shoreline, Washington		j										
	GRAPHIC LOG	LOCATION See Exhibit 2	CRIPTION		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER					
	0.	0.2 <u>ASPHALT</u> SAND WITH SILT AND GRAVEL (SP-SM), grav to brown, sligh	t sheen, no odor, mo	ist. (PROBABLE FILL)										
TERRACON_DATATEMPLATE.GDT 6/22/17		Becomes increasingly course			-	-		<1						
7.GPJ	<u>,</u> ,				-			<1	WB5 -4					
L SMART LOG 81165045 BORING LOGS 6-16-1		5.0 SAND WITH SILT AND GRAVEL (SP-SM), brown to gray, cou	rse sand, no sheen, r	no odor, iron oxide staining, wet	- 5			<1						
DNMENTA	° °	8.5			-	-								
RT. ENVIR	0000	SAND WITH SILT AND GRAVEL (SP-SM), gray, no sheen, no	odor, wet		-	-								
L REPO	<u>)</u>	10.0						<1	WB5					
ED FROM ORIGINA		Boring Terminated at 10 Feet			- 10-				-9.0					
PARATE		The stratification lines represent the approximate transition between differing types; in-situ these transitions may be gradual or may occur at different dep	g soil types and/or rock ths than shown.											
3 IS NOT VALID IF SEI	Advan Dire Aband Bori	cement Method: ct Push Technology onment Method: ngs backfilled with bentonite chips upon completion		Notes:										
NG LOG	∇	WATER LEVEL OBSERVATIONS		Boring Started: 6/16/2017	Borin	ig Com	plete	ed: 6/16	6/2017					
BOR	<u> </u>			Drill Rig: Geoprobe 7782DT	Drille	er: Holo	cene)						
THIS	21905 64th Ave W Ste 100 Mountlake Terrace, WA Project No.: 81165045							Exhibit: WB-5						

	BORING LOG NO. WB6							Page 1 of 1				
PR	OJECT: 25th Avenue NE Drainage-Shoreline N Maintenance Facility Site	North	CLIENT: Louis B Seattle,	erger Washington								
SIT	E: 19547 25th Avenue NE Shoreline, Washington											
GRAPHIC LOG	LOCATION See Exhibit 2				DEPTH (ft)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER			
	DEPTH MATERIAL 0.2 ASPHALT	DESCRIPTION				- 0			S			
	SAND WITH SILT (SP-SM), gray, no sheen, no odor, mois	t, (PROBABL	E FILL)		_			<1				
	4.0 SANDY ORGANIC SILT WITH GRAVEL (ML), dark brown,	, slight sheen	, no odor, wet		_			<1	WB6 -4			
	Becomes increasingly course				5 —	∇						
	SAND WITH SILT AND GRAVEL (SP-SM), brown to gray, Becomes increasingly course	no sheen, no	odor, wet		_			<1	WB6 -6			
					_			<1				
	10.0				10			<1	WB6 -9.5			
	Boring Terminated at 10 Feet				10							
	The stratification lines represent the approximate transition between di types; in-situ these transitions may be gradual or may occur at different	ffering soil type t depths than s	es and/or rock hown.									
Advand Dire	zement Method: zt Push Technology		1	lotes:								
Aband Bori	onment Method: ngs backfilled with bentonite chips upon completion											
	WATER LEVEL OBSERVATIONS		Вс	oring Started: 6/16/2017	Borin	g Com	plete	d: 6/16	/2017			
		err		ill Rig: Geoprobe 7782DT	Drille	r: Holo	cene					
		21905 64th Av Mountlake T	ve W Ste 100 errace, WA Pr	oject No.: 81165045	Exhib	vit: V	VB-6					

	BORING LOG NO. WB7							Page 1 of 1				
ſ	PR	OJECT: 25th Avenue NE Drainage-Shorelin Maintenance Facility Site	ne North	CLIENT: Louis E Seattle	Berger , Washington							
	SIT	E: 19547 25th Avenue NE Shoreline, Washington										
	GRAPHIC LOG	LOCATION See Exhibit 2				DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE NUMBER		
		DEPTH MATE 0.2 ASPHALT	ERIAL DESCRIPTION	l	a maiat		-					
6/22/17		<u>SAND WITH SILT AND GRAVEL (SP-SM)</u> , brown to g (PROBABLE FILL)	ray, no sneen, no	odor, iron oxide stainin	g, moist,							
re.gdt						_			<1	WB7 -1.5		
DN_DATATEMPLA		Grades to wet		_	\bigtriangledown							
IS 6-16-17.GPJ TERRACC		Relic asphalt approximately 2" thick				-			10.5	WB7 -4.5		
165045 BORING LOG	0	6.0 SANDY ORGANIC SILT WITH GRAVEL (ML), dark br	own, no sheen, n	o odor, wet		_			12.8	WB7 -6		
ENTAL SMART LOG 81		Becomes increasingly course				_						
RONM		8.5										
ENVI		9.0				_						
PORT.	<mark>}。</mark> [SAND WITH SILL AND GRAVEL (SP-SINI, Glay, HU SI	leen, no odor, we	а С					1.2	WB7 -9		
NAL RE	o Ç	10.0 Period of 40 Feet				10-						
D FROM ORIGI		Boring Terminated at 10 Peet										
ARATE		The stratification lines represent the approximate transition between differing soil types and/or rock types; in-situ these transitions may be gradual or may occur at different depths than shown.										
IF SEP.	Advan Dire	cement Method: ct Push Technology			Notes:							
S NOT VALID	Aband Bori	onment Method: ngs backfilled with bentonite chips upon completion										
LOG IS						L						
RING	\bigtriangledown	While drilling	llerr	aron 🖁	oring Started: 6/16/2017	Boring	g Com	plete	d: 6/16	/2017		
THIS BC			21905 64th A Mountlake T	ve W Ste 100 Ferrace, WA	roject No.: 81165045	Exhib	i. HOIO	vene				

BORING LOG NO. WB8									e 1 o	f 1				
PR	OJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	reline North	CLIENT: Louis Seatt	Berger le, Washington									
SIT		19547 25th Avenue NE Shoreline, Washington						-	-					
GRAPHIC LOG	LOCATION	See Exhibit 2				DEPTH (ft)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER				
	DEPTH 0.2 ASPH/	ALT	MATERIAL DESCRIPTION	N						S				
	SAND FILL)	WITH SILT AND GRAVEL (SP-SM), gray t	to brown, course sand	, no sheen, no odor, m	noist, (PROBABLE	_								
	Grades	to wet				-	-		6.8	WB8 -1.5				
	5.0	<u>(ORGANIC SILT (ML)</u> , dark brown, trace	gravel, no sheen, orga	anic odor, wet		-	_		2.0					
	Becom	WITH SILT AND GRAVEL (SP-SM), brown	n to gray, course sand	, no sheen, no odor, w	et	-	-		1.2					
	Grades	to fine sand with silt and gravel												
	8.5	CLAY (CL-ML), gray, no sheen, no odor, v	wet											
	SAND	WITH SILT AND GRAVEL (SP-SM), gray,	course sand, no shee	n, no odor, wet		_	-							
P	10.0					10			<1	WB8 -9.5				
<u> </u>	Boring	Terminated at 10 Feet				10-				0.0				
	The stratific types; in-site	ation lines represent the approximate transition these transitions may be gradual or may occur	between differing soil typ at different depths than	es and/or rock shown.				•						
Advan Dire	acement Metho ect Push Techn	d: ology			Notes:									
Bori	ings backfilled	a: with bentonite chips upon completion												
	WATER	LEVEL OBSERVATIONS			Boring Started: 6/16/2017	Borir	ng Com	plete	d: 6/16	/2017				
\square	While drilli	ng	llerr	acon	Drill Rig: Geoprobe 7782DT	Drille	er: Holo	ocene						
	21905 64th Ave W Ste 100 Mountlake Terrace, WA Project No.: 81165045								Exhibit: WB-8					

		BORING LOG NO. WB9						Page 1 of 1				
	PR	OJECT: 25th Avenue NE Drainage-Shoreline North Maintenance Facility Site	n CLIENT:	Louis Berger Seattle, Washington								
	SI	E: 19547 25th Avenue NE Shoreline, Washington		jj								
	GRAPHIC LOG	LOCATION See Exhibit 2			DEPTH (ft)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER			
		DEPTH MATERIAL DESCI	RIPTION						S			
6/22/17		SAND WITH SILT (SP-SM), gray to brown, course sand, trace gr	avel, no sheen, no	odor, moist, (PROBABLE FILL)	-							
.GDT		Grades to wet						3.0	WB9			
J TERRACON_DATATEMPLATE				-	-							
3 81165045 BORING LOGS 6-16-17.GI		6.0 SAND WITH SILT (SP-SM), brown to gray, trace gravel, no shee		5 -	-		<1					
NL SMART LOC		7.5 SANDY ORGANIC SILT (ML), dark brown, trace gravel, no shee	n, organic odor, we	t				14	WB9			
IVIRONMENT/		Becomes increasingly course			-	-			-7.5			
Ш Ц	0	9.0 SAND WITH SILT AND GRAVEL (SP-SM), gray, no sheen, no o	dor, wet			-						
EPOR.									14/50			
IGINAL R.		10.0 Boring Terminated at 10 Feet			- 10-			<1	WB9 -9.5			
ED FROM OR												
ARATI	The stratification lines represent the approximate transition between differing soil types and/or rock types; in-situ these transitions may be gradual or may occur at different depths than shown.											
D IF SEF	Advar Dire	cement Method: ct Push Technology		Notes:								
G IS NOT VALI	Abano Bor	onment Method: ngs backfilled with bentonite chips upon completion										
IG LO(_	WATER LEVEL OBSERVATIONS		Boring Started: 6/16/2017	Borir	ng Com	plete	d: 6/16	/2017			
30RIN	∇	While drilling	racc	Drill Rig: Geoprobe 7782DT	Drille	er: Holo	cene	•				
THIS E	21905 64th Ave W Ste 100 Mountlake Terrace, WA Project No.: 81165045						Exhibit: WB-9					

			F	⊃ag	e 1 c	of 1		
PR	OJECT: 25th Avenue NE Drai Maintenance Facility	nage-Shoreline North Site	CLIENT: Louis Berger Seattle, Washington					
SIT	TE: 19547 25th Avenue N Shoreline, Washingto	E on						
GRAPHIC LOG	LOCATION See Exhibit 2			DEPTH (ft)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER
· · · · · · · · ·	DEPTH 0.2 <u>ASPHALT</u>	MATERIAL DESCRIPTIC	N			0,		S
	<u>SAND WITH SILT (SP-SM)</u> , gray to	brown, no sheen, no odor, moist, ((PROBABLE FILL)	-	-		4.9	WB10 -3
 	4.0 SANDY ORGANIC SILT (ML), dark	brown, no sheen, no odor, wet						
	Becomes increasingly course			5 -				
<u> </u>	5.0 SAND WITH SILT AND GRAVEL (S	P-SM), gray, course sand, no she	en, no odor, wet				<1	WB10
	Becomes increasingly fine			-	-			-6
	<u>SILT (ML)</u> , gray, no sheen, no odor,	wet					<1	WB10
	10.0							-9
	Boring Terminated at 10 Feet			- 10-				
	The stratification lines represent the approxim types; in-situ these transitions may be graduated approximation of the strategies of the s	nate transition between differing soil ty al or may occur at different depths than	pes and/or rock shown.		1			I
Advan Dire	ncement Method: ect Push Technology		Notes:					
Aband Bori	donment Method: ings backfilled with bentonite chips upon compl	etion						
	WATER LEVEL OBSERVATIONS		Boring Started: 6/16/2017	Borir	ng Com	plete	d: 6/16	6/2017
	whie drilling	— IIerr	Drill Rig: Geoprobe 7782DT	Drille	er: Holo	cene	·	
		21905 64th . Mountlake	Ave W Ste 100 Terrace, WA Project No.: 81165045	Exhil	bit: W	/B-1()	

		В	ORING LC	G NO. WB ²	11		F	Pag	e 1 o	f 1
PR	OJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	oreline North	CLIENT: Louis Seattl	Berger e, Washington					
SIT	ГE:	19547 25th Avenue NE Shoreline, Washington								
GRAPHIC LOG	LOCATIC	N See Exhibit 2				DEPTH (ft)	NATER LEVEL BSERVATIONS	AMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER
	DEPTH 0.2 ASP	HALT	MATERIAL DESCRIPTIO	N			-0	0		Ś
	SAN	D WITH SILT (SP-SM), gray to brown, fine s	and, no sheen, no od	or, moist, (PROBABLE	FILL)	_	-		<1	
	4.5 SAN	DY ORGANIC SILT (ML) dark brown no sh	een organicodor mo	sict			-		<1	WB11 -3.5
	Boog	maa ingraagingly gourse	icen, organic odor, me			5-				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sand WITH SILT AND GRAVEL (SP-SM). gray, course sand, no sheen, no odor, wet Becomes increasingly fine					_				
	8.0						-		<1	WB11 -7
	<u>SAN</u>	<u>u with Sill (Sr-Smi</u> , gray, no sheen, no c	uor, wei			_	_			
	10.0					10-			<1	WB11 -9.5
	Bori	ng Terminated at 10 Feet								
	The strati types; in-s	fication lines represent the approximate transition situ these transitions may be gradual or may occur	between differing soil typ r at different depths than	es and/or rock shown.						
Advan Dire Aband Bori	Icement Met ect Push Tec lonment Met ings backfille	hod: hnology hod: ad with bentonite chips upon completion	-		Notes:					
	WATI	ER LEVEL OBSERVATIONS			Boring Started: 6/16/0017	Poria		nlota	d. 6/10	/2017
\square	While dr	illing	llerr	acon	Drill Rig: Geoprobe 7782DT	Drille	er: Holo	ipiete	u. 0/16	12011
			21905 64th A Mountlake	Ave W Ste 100 Terrace, WA	Project No.: 81165045	Exhil	pit: V	VB-1	1	

	BORING LOG NO. WB12 Page 1 of 1							f 1		
PR	OJECT:	25th Avenue NE Drainage-Sho Maintenance Facility Site	oreline North	CLIENT: Louis Seatt	Berger le, Washington					
SIT	ſE:	19547 25th Avenue NE Shoreline, Washington								
GRAPHIC LOG	LOCATION	N See Exhibit 2				DEPTH (ft)	WATER LEVEL BSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	AMPLE NUMBER
	DEPTH 0.2 ASPH	<u>ALT</u>	MATERIAL DESCRIPTION	1			-0	00		٥ ٥
	SAND	<u>: WITH SILT AND GRAVEL (SP-SM)</u> , gray	to brown, no sheen, n	o odor, moist, (PROBA	BLE FILL)	-	-			
									1.3	WB12 -3
	Grade	es to wet				-				
	4.5 SAND	Y ORGANIC SILT (ML), dark brown, no sh	neen, no odor, wet							
	Becor	nes increasingly course				5-	1			
	SAND	WITH SILT AND GRAVEL (SP-SM), brow	n to gray, no sheen, n	o odor, wet		-	-		<1	
						_	-		<1	
	10.0					10			1.2	WB12 -9.5
	Borin	g Terminated at 10 Feet				10-				
	The stratified types; in-si	cation lines represent the approximate transition tu these transitions may be gradual or may occur	between differing soil typ r at different depths than	es and/or rock shown.			•			
Advan Dire	cement Meth ect Push Tech	od: nology	-		Notes:					
Aband Bori	ionment Meth ings backfilled	d: d with bentonite chips upon completion								
	WATE	R LEVEL OBSERVATIONS	٦Г		Boring Started: 6/16/2017	Borin	g Com	plete	d: 6/16	/2017
	While dril	ling	Ilerr	JCON	Drill Rig: Geoprobe 7782DT	Drille	er: Holc	cene		
<u> </u>			– 21905 64th A Mountlake	ve W Ste 100 Ferrace, WA	Project No.: 81165045	Exhit	oit: V	VB-12	2	

APPENDIX D – ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM

June 28, 2017

Ms. Carol Lybeer Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043

Dear Ms. Lybeer,

On June 16th, 31 samples were received by our laboratory and assigned our laboratory project number EV17060119. The project was identified as your 81165045. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Bagun

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CERTIFICATE OF ANALYSIS

CLIENT:	Terracon 21905 - 64th Ave \ Mountlake Terrace	N, Suite 100 e, WA 98043		DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-01				
CLIENT CONTACT:	Carol Lybeer		D	ATE RECEIVED:	06/16/20)17			
CLIENT PROJECT:	81165045		COL	LECTION DATE:	6/16/201	7 8:10:00 A	M		
CLIENT SAMPLE ID	WB1-2		WDOE AG	CCREDITATION:	C601				
		SAMPLE	DATA RESULTS						
			REPORTING	DILUTION		ANALYSIS			
	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY		
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/22/2017	SNC		
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC		
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/22/2017	DLC		
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045	W, Suite 100 e, WA 98043	D, COL	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:			M
CLIENT SAMPLE ID	WB1-2		WDOE AC	CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1.3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
1,2,4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
, ,		-					
						ANALYSIS /	
SURROGATE	METHOD	%REC				DATE	Вĭ
TFT	NWTPH-GX	72.7				06/22/2017	SNC
C25	NWTPH-DX	95.9				06/22/2017	DLC
1,2-Dichloroethane-d4	EPA-8260	97.1				06/19/2017	DLC
Toluene-d8	EPA-8260	98.0				06/19/2017	DLC
4-Bromofluorobenzene	EPA-8260	98.5				06/19/2017	DLC

Page 3

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

RIGHT SOLUTIONS RIGHT PARTNER

CERTIFICATE OF ANALYSIS									
CLIENT:	Terracon 21905 - 64th Ave W, Suite 100	DATE: ALS JOB#:	6/28/2017 EV17060119						
	Mountlake Terrace, WA 98043	ALS SAMPLE#:	EV17060119-01						
CLIENT CONTACT:	Carol Lybeer	DATE RECEIVED:	06/16/2017						
CLIENT PROJECT:	81165045	COLLECTION DATE:	6/16/2017 8:10:00 AM						
CLIENT SAMPLE ID	WB1-2	WDOE ACCREDITATION:	C601						
SAMPLE DATA RESULTS									

U - Analyte analyzed for but not detected at level above reporting limit.

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045 WB2-4.5	W, Suite 100 e, WA 98043	D/ COLI WDOE AC	6/28/2017 EV17060119 EV17060119-03 06/16/2017 6/16/2017 8:24:00 AM C601				
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/22/2017	SNC	
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	58	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	0.72	0.23	1	MG/KG	06/21/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.1.1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1 3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1 3-Dichloropropene	EDA-8260	U	0.010	1	MC/KC	06/10/2017		
1 1 2-Trichloroethopo	EDA 2260	U	0.010	1	MC/KC	06/10/2017		
		U	0.010	1	MC/KC	06/10/2017		
1 3 Dichloropropaga		U	0.000	1	MC/KC	06/10/2017		
Tetrachloroothylono			0.010	1	MG/KG	06/10/2017		
renduliurueniylelle	LFA-0200	0	0.010	1	ING/NG	00/13/2017	DLC	

Page 5

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045 WB2-4.5	W, Suite 100 e, WA 98043 SAMPLE	DA COLL WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION: DATA RESULTS			M
			REPORTING			ANALYSIS A	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY
1.2 Dibromoothana	EPA-0200	U	0.010	1	MG/KG	06/19/2017	
Chlorobonzono	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	
1 1 1 2 Totrachloroothana	EPA 8260	0	0.010	1	MG/KG	06/19/2017	
Fthylbenzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
	EPA 8260	0	0.010	1	MG/KG	06/19/2017	
Styrene	EPA-8260	0	0.020	1	MG/KG	06/19/2017	
	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
Bromoform	EPA 8260	0	0.010	1	MG/KG	06/19/2017	
Isopropulbonzono	EPA 8260	0	0.010	1	MG/KG	06/19/2017	
1 1 2 2-Tetrachloroethane	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
1,2,2-Trichloropropage	EPA-8260	U U	0.010	1	MG/KG	06/19/2017	
Bromobenzene	EPA-8260	U U	0.010	1	MG/KG	06/19/2017	
N-Pronyl Benzene	EPA-8260	U U	0.010	1	MG/KG	06/19/2017	
2-Chlorotoluene	EPA-8260	U U	0.010	1	MG/KG	06/19/2017	
1 3 5-Trimethylbenzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
T-Butyl Benzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
1.2 <i>A</i> -Trimethylbenzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
S-Butyl Benzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
P-Isopropyltoluene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
1 3-Dichlorobenzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
1.4-Dichlorobenzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	
1 2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	
1 2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	
1.2.4-Trichlorobenzene	EPA-8260	U	0.030	1	MG/KG	06/19/2017	
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	
Nanhthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	
1 2 3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,0 111011010001120110	2177 0200	•	0.010	•	monto	00/10/2011	
SUBBOCATE	METHOD	0/ DEC				ANALYSIS A DATE	NALYSIS BY
JUKKUGAIE		%REC				00/00/0017	010
	NWTPH-GX	61.8				06/22/2017	SNC
	NVV I PH-DX	94.1				06/22/2017	DLC
1,2-Dichloroethane-d4	EPA-8260	101				06/19/2017	DLC

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

97.1

103

96.4

EPA-8260

EPA-8260

EPA-8260

1,2-Dichloroethane-d4

Toluene-d8

Toluene-d8

Page 6

DLC

DLC

DLC

06/21/2017

06/19/2017

06/21/2017

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	Terracon 21905 - 64th Ave W Mountlake Terrace,	Suite 100 WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-03	
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045		DATE RECEIVED: COLLECTION DATE:	06/16/2017 6/16/2017 8:24:00 A	M
CLIENT SAMPLE ID	WB2-4.5		WDOE ACCREDITATION:	C601	
		SAMPLE D	DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS DATE	ANALYSIS BY
4-Bromofluorobenzene	EPA-8260	103		06/19/2017	DLC
4-Bromofluorobenzene	EPA-8260	99.4		06/21/2017	DLC

Chromatogram indicates that it is likely that sample contains an unidentified oil range product.

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 CT: Carol Lybeer CT: 81165045 E ID WB3-4		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:		6/28/2017 EV17060119 EV17060119-05 06/16/2017 6/16/2017 8:46:00 AM C601		
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/22/2017	SNC	
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	0.40	0.13	1	MG/KG	06/21/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB3-4		D COL WDOE AG DATA RESULTS	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-05 06/16/2017 6/16/2017 8:46:00 AM C601		
			REPORTING			ANAI YSIS			
ΔΝΔΙ ΥΤΕ	METHOD	DESIII TS	LIMITS	FACTOR		DATE	BY		
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.1.1.2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
m.p-Xvlene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
o-Xvlene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.1.2.2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2.3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1 3 5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
1 2 4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
S Butyl Bonzono	EDA 8260	U	0.010	1	MG/KG	06/19/2017			
	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1 2 Dichlorobonzono	EPA 9260	0	0.010	1	MC/KC	06/10/2017			
1,3-Dichlorobenzene	EPA-0200	U	0.010	1	MC/KC	06/19/2017	DLC		
N Rutylbonzono	EPA-0200	U	0.010	1	MG/KG	06/19/2017			
1 2 Dichlorobonzono	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1,2-Dichlorobenzene	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1.2.4 Trichlorohonzono	EPA 8260	0	0.030	1	MG/KG	06/19/2017			
Hoxachlorobutadiono	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
Nephthelene	EPA 9260	0	0.010	1	MC/KC	06/10/2017			
	EPA-0200	U	0.010	1	MC/KC	06/19/2017	DLC		
1,2,3-Thchlorobenzene	EPA-8200	0	0.010	Ι	NIG/KG	06/19/2017	DLC		
0110000175	METHOD					ANALYSIS DATE	ANALYSIS BY		
SURROGATE	METHOD	%REC							
	NWTPH-GX	65.4				06/22/2017	SNC		
C25	NWTPH-DX	102				06/22/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	104				06/19/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	104				06/21/2017	DLC		

1,2-Dichloroethane-d4EPA-826010406/21/2017Toluene-d8EPA-826010206/19/2017Toluene-d8EPA-826097.006/21/2017

Page 9

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental DLC

		CERTIFICA	TE OF ANALYSIS			
CLIENT:	Terracon 21905 - 64th Ave W Mountlake Terrace	/, Suite 100 WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-05)17 60119 60119-05	
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045		DATE RECEIVED: COLLECTION DATE:	06/16/2017 6/16/2017 8:46:00 A	M	
CLIENT SAMPLE ID	WB3-4		WDOE ACCREDITATION:	C601		
		SAMPLE [DATA RESULTS			
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS By	
4-Bromofluorobenzene	EPA-8260	104		06/19/2017	DLC	
4-Bromofluorobenzene	EPA-8260	97.4		06/21/2017	DLC	

Page 10 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 ACT: Carol Lybeer CCT: 81165045 LE ID WB4-1.5		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOF ACCREDITATION:		6/28/2017 EV17060119 EV17060119-08 06/16/2017 6/16/2017 9:00:00 AM C601		
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	23	3.0	1	MG/KG	06/22/2017	SNC	
TPH-Diesel Range	NWTPH-DX	58	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	120	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1.3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1.3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
1 1 2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017		
1 3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
		-						

		CERTIFIC	ATE OF ANALYSIS						
	Terracon			DATE	6/28/201	7			
OEIEITT:	21905 - 64th Ave W. Suite 100			ALS JOB#			EV17060119		
	Mountlake Terrace	e, WA 98043		ALS SAMPLE#:			EV17060119-08		
CLIENT CONTACT:	Carol Lybeer		D	DATE RECEIVED		06/16/2017			
CLIENT PROJECT:	81165045	81165045		LECTION DATE:	6/16/201	7 9:00:00 A	М		
CLIENT SAMPLE ID	WB4-1.5		WDOF AC	CCREDITATION	C601				
		SAMPLE	DATA RESULTS						
			REPORTING						
	METHOD	RESULTS	LIMITS	TACTOR	UNITS				
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1,2-l etrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
lsopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
						ANALYSIS /	ANALYSIS		
SUKROGATE	METHOD	%REC							
1+1	NWTPH-GX	89.9				06/22/2017	SNC		
025	NWTPH-DX	106				06/22/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	99.2				06/19/2017	DLC		
Toluene-d8	EPA-8260	96.5				06/19/2017	DLC		

103

4-Bromofluorobenzene

EPA-8260

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

06/19/2017

	CERTIFICATE OF ANALYSIS								
CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043	DATE: ALS JOB#:	6/28/2017 EV17060119 EV17060110 08						
CLIENT CONTACT:	Carol Lybeer	DATE RECEIVED:	06/16/2017						
CLIENT PROJECT: CLIENT SAMPLE ID	81165045 WB4-1.5	COLLECTION DATE: WDOE ACCREDITATION:	6/16/2017 9:00:00 AM C601						
	SAMPLE DATA RESULTS								

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains highly weathered gasoline, highly weathered diesel and lube oil.

Gasoline range product results biased high due to semivolatile range product overlap.

Page 13 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	Terracon 21905 - 64th Ave V Mountlake Terrace	erracon 1905 - 64th Ave W, Suite 100 Iountlake Terrace, WA 98043		DATE: 6/28/2017 ALS JOB#: EV17060119 ALS SAMPLE#: EV17060119-11				
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	Carol Lybeer 81165045		DATE RECEIVED:		06/16/2017 6/16/2017 9:25:00 AM		
	WB5-9 5				C601	. 0.20.00 /		
	1100 0.0	SAMPLE						
				ATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS / DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/23/2017	SNC	
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	

U

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Tetrachloroethylene

EPA-8260

0.010

MG/KG

1

06/19/2017

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB5-9.5		DA COLL WDOE AC DATA RESULTS	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:		6/28/2017 EV17060119 EV17060119-11 06/16/2017 6/16/2017 9:25:00 AM C601		
			REPORTING	DILUTION		ANALYSIS A		
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY	
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
lsopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2.4-Trimethvlbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
S-Butyl Benzene	FPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
1 3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
1.4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017		
1 2 Dichlorobonzono	EDA 8260	0	0.010	1	MG/KG	06/19/2017		
1,2-Dictrioroberizerie	EDA 8260	0	0.010	1	MG/KG	06/19/2017		
	EPA 9260	0	0.030	1	MC/KC	06/19/2017		
	EFA-0200	U	0.010	1		06/19/2017	DLC	
Hexachioropulaciene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Naprimaiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,3-1 richlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
SUPPOGATE	METHOD	%PEC				ANALYSIS A	ANALYSIS BY	
TET		88.8				06/23/2017	SNC	
C 25		102				06/22/2017		
1 2 Dichloroothana d4		04.4				06/10/2017		
Toluono da		J4.4				06/10/2017		
10100110-00	EPA-0200	33.1				00/19/2017		

EPA-8260

Page 15

99.4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

4-Bromofluorobenzene

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

06/19/2017

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 ONTACT: Carol Lybeer ROJECT: 81165045 AMPLE ID WB6-4		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOF ACCREDITATION:		6/28/2017 EV17060119 EV17060119-12 06/16/2017 6/16/2017 9:30:00 AM C601		
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/22/2017	SNC	
TPH-Diesel Range	NWTPH-DX	25	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	86	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	0.50	0.39	1	MG/KG	06/21/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	0.10	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1.3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB6-4		D, COLI WDOE AC DATA RESULTS	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-12 06/16/2017 6/16/2017 9:30:00 AM C601		
		0, 22	DEDODTINO	DUUTION					
		550111 70	LIMITS	FACTOR		DATE	ANAL 1515 BY		
ANALYIE Dibromochloromethane	EPA-8260	RESULIS	0.010	1	UNITS MG/KG	06/19/2017			
1 2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
1 1 1 2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Fthylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
Styropo	EPA 9260	0	0.020	1	MC/KC	06/19/2017	DLC		
	EPA-0200	0	0.010	1	MC/KG	06/19/2017	DLC		
0-Aylene Promoform	EPA-0200	0	0.010	1	MC/KG	06/19/2017	DLC		
	EFA-0200	U	0.010	1	MC/KG	06/19/2017	DLC		
1 1 0 0 Tatracklass ath as a	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3- i richioropropane	EPA-8260	0	0.010	1	MG/KG	06/19/2017	DLC		
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
						ANALYSIS	ANALYSIS		
SURROGATE	METHOD	%REC				DATE	BY		
TFT	NWTPH-GX	60.6				06/22/2017	SNC		
C25	NWTPH-DX	103				06/22/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	101				06/19/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	73.0				06/21/2017	DLC		

Toluene-d8 EPA-8260 100 06/19/2017 Toluene-d8 EPA-8260 78.8 06/21/2017

Page 17

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental DLC

		CERTIFICA	TE OF ANALYSIS			
CLIENT:	TerraconDATE:21905 - 64th Ave W, Suite 100ALS JOB#:Mountlake Terrace, WA 98043ALS SAMPLE#:			6/28/2017 EV17060119 EV17060119-12		
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	,	DATE RECEIVED: COLLECTION DATE:	06/16/2017 6/16/2017 9:30:00 A	M	
CLIENT SAMPLE ID	WB6-4		WDOE ACCREDITATION:	C601		
		SAMPLE I	DATA RESULTS			
SURROGATE	METHOD	%REC		ANALYSIS / DATE	ANALYSIS BY	
4-Bromofluorobenzene	EPA-8260	105		06/19/2017	DLC	
4-Bromofluorobenzene	EPA-8260	83.1		06/21/2017	DLC	

Page 18 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB7-6		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-16 06/16/2017 6/16/2017 10:05:00 AM C601		
		SAMPLE	E DATA RESULTS						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY		
TPH-Volatile Range	NWTPH-GX	150	6.0	2	MG/KG	06/23/2017	SNC		
TPH-Diesel Range	NWTPH-DX	510	25	1	MG/KG	06/22/2017	DLC		
TPH-Oil Range	NWTPH-DX	750	50	1	MG/KG	06/22/2017	DLC		
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Acetone	EPA-8260	0.38	0.16	1	MG/KG	06/21/2017	DLC		
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045 WB7-6	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB7-6		DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-16 06/16/2017 6/16/2017 10:05:00 AM C601		
			PEPOPTING						
	METHOD		LIMITS	FACTOR		DATE	BY		
Dibromochloromethane	EPA-8260	RESULIS	0.010	1	UNITS MG/KG	06/19/2017	DLC		
1 2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1 1 1 2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
m n-Xvlene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Styrene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
o-Yvlene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
Isonropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
1 1 2 2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
1 2 3-Trichloropropage	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
Riomohonzono	EDA 8260	U	0.010	1	MG/KG	06/19/2017			
N Propul Bonzono	EDA 8260	U	0.010	1	MG/KG	06/19/2017			
2 Chlorotoluono	EPA 9260	0	0.010	1	MC/KC	06/19/2017			
2-Chiorotototelle	EPA 9260	0	0.010	1	MC/KC	06/19/2017			
1,5,5-Thineuryidenzene	EFA-0200	U	0.010	1	MC/KG	06/19/2017	DLC		
4-Chiorololuene	EPA-8260	U	0.010	1	NG/KG	06/19/2017	DLC		
1-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,4-I rimetnyibenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
S-Butyl Benzene	EPA-8260	0	0.010	1	MG/KG	06/19/2017	DLC		
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
							ANALYSIS		
SURROGATE	METHOD	%REC				DATE	Бĭ		
TFT 2X Dilution	NWTPH-GX	79.6				06/23/2017	SNC		
C25	NWTPH-DX	111				06/22/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	99.2				06/19/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	99.7				06/21/2017	DLC		

1,2-Dichloroethane-d4EPA-826099.706/21/2017Toluene-d8EPA-826092.806/19/2017Toluene-d8EPA-826092.506/21/2017

DLC

DLC

Page 20

	CEF	RTIFICATE OF ANALYSIS	
CLIENT:	Terracon 21905 - 64th Ave W, Suite 10 Mountlake Terrace, WA 9804	DATE: 0 ALS JOB#: 3 ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-16
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	DATE RECEIVED: COLLECTION DATE:	06/16/2017 6/16/2017 10:05:00 AM
CLIENT SAMPLE ID	WB7-6	WDOE ACCREDITATION:	C601
	SA	AMPLE DATA RESULTS	
SURROGATE	METHOD %REC		ANALYSIS ANALYSIS DATE BY

EPA-8260 4-Bromofluorobenzene 114 06/19/2017 DLC 4-Bromofluorobenzene EPA-8260 101 06/21/2017 DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains highly weathered gasoline, weathered diesel and lube oil. Chromatogram indicates that it is likely that sample contains highly weathered gasoline, weathered diesel 1 and lube oil.

Diesel range product results biased high due to oil range product overlap.

Gasoline range product results biased high due to semivolatile range product overlap.

Page 21 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043			DATE: ALS JOB#: ALS SAMPLE#:		6/28/2017 EV17060119 EV17060119-17		
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045		D/ COLI	DATE RECEIVED: COLLECTION DATE:		06/16/2017 6/16/2017 10:10:00 AM		
CLIENT SAMPLE ID	WB7-9		WDOE AC	CREDITATION:	C601			
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/28/2017	SNC	
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/26/2017	DLC	
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/26/2017	DLC	
SURROGATE	METHOD	%RFC				ANALYSIS DATE	ANALYSIS BY	
TFT	NWTPH-GX	83.4				06/28/2017	SNC	
C25	NWTPH-DX	107				06/26/2017	DLC	

Page 22 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB8-1.5		D, COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOF ACCREDITATION:			6/28/2017 EV17060119 EV17060119-18 06/16/2017 6/16/2017 10:15:00 AM C601		
		SAMPLE	DATA RESULTS						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY		
TPH-Volatile Range	NWTPH-GX	13	3.0	1	MG/KG	06/23/2017	SNC		
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC		
TPH-Oil Range	NWTPH-DX	140	50	1	MG/KG	06/22/2017	DLC		
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.1.1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1 3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Methyl-2-Pentanone	EPA-8260	U U	0.050	1	MG/KG	06/19/2017	DLC		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Cis-1 3-Dichloropropene	EPA-8260	U U	0.010	1	MG/KG	06/19/2017			
1 1 2-Trichloroethane	ED4-8260	U U	0.010	1	MC/KC	06/10/2017			
	ED4-8260	U U	0.010	1	MC/KC	06/10/2017			
1 3-Dichloropropago	EDA 2260	0	0.000	1	MC/KC	06/10/2017			
Tetrachloroethylopo	EDA 2260	0	0.010	1	MC/KC	06/10/2017			
i Gradino de riviene	LFA-0200	0	0.010	1	MG/NG	00/13/2017	DLO		

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	ENT: Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 ENT CONTACT: Carol Lybeer ENT PROJECT: 81165045 ENT SAMPLE ID WB8-1.5 SAMPLE DAT			DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	6/28/2017 EV17060119 EV17060119-18 06/16/2017 6/16/2017 10:15:00 AM C601			
			REPORTING			4NAI YSIS 4NAI		
ANALYTE Dibromochloromethane	METHOD EPA-8260	RESULTS U	LIMITS 0.010	FACTOR	UNITS MG/KG	06/19/2017	BY	
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
N-Butvlbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1 2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1 2 4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Nanhthalene	EPA-8260	U U	0.010	1	MG/KG	06/19/2017	DLC	
1 2 3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,0 111011010001120110	2177 0200	0	0.010	•	monto	00/10/2011		
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
TFT	NWTPH-GX	98.1				06/23/2017	SNC	
C25	NWTPH-DX	111				06/22/2017	DLC	
1.2-Dichloroethane-d4	EPA-8260	102				06/19/2017	DLC	
Toluene-d8	EPA-8260	98.0				06/19/2017	DLC	

Page 24 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

101

EPA-8260

4-Bromofluorobenzene

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

06/19/2017

CERTIFICATE OF ANALYSIS								
CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-18					
CLIENT CONTACT:	Carol Lybeer		06/16/2017 C/4C/2017					
CLIENT SAMPLE ID	WB8-1.5	WDOE ACCREDITATION:	C601					
SAMPLE DATA RESULTS								

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains highly weathered gasoline and lube oil.

Gasoline range product results biased high due to semivolatile range product overlap.

Page 25 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB9-1.5		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:		6/28/2017 EV17060119 EV17060119-20 06/16/2017 6/16/2017 10:35:00 AM C601		
		SAMPLE	DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
TPH-Volatile Range	NWTPH-GX	7.1	3.0	1	MG/KG	06/23/2017	SNC	
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	200	50	1	MG/KG	06/22/2017	DLC	
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	

		CERTIFIC	ATE OF ANALYSIS						
CLIENT:	Terracon			DATE:	6/28/201	6/28/2017			
	21905 - 64th Ave W, Suite 100			ALS JOB#:		EV17060119			
	Mountlake Terrace	e, WA 98043		ALS SAMPLE#:			EV17060119-20		
CLIENT CONTACT:	Carol Lybeer		D	ATE RECEIVED:	06/16/2017				
CLIENT PROJECT:	81165045	81165045		LECTION DATE:	6/16/201	7 10:35:00	AM		
CLIENT SAMPLE ID	WB9-1.5		WDOE AC	CCREDITATION:	C601				
		SAMPLE	DATA RESULTS						
			REPORTING						
	METHOD		LIMITS	FACTOR		DATE	BY		
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
P-lsopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
						ANALYSIS	ANALYSIS		
SURROGATE	METHOD	%REC				DATE	BY		
TFT	NWTPH-GX	94.9				06/23/2017	SNC		
C25	NWTPH-DX	109				06/22/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	101				06/19/2017	DLC		
Toluene-d8	EPA-8260	95.4				06/19/2017	DLC		

Page 27 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

104

4-Bromofluorobenzene

EPA-8260

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

06/19/2017

CERTIFICATE OF ANALYSIS								
CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043	DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-20					
CLIENT CONTACT:	Carol Lybeer	DATE RECEIVED:	06/16/2017					
CLIENT PROJECT:	81165045	COLLECTION DATE:	6/16/2017 10:35:00 AM					
CLIENT SAMPLE ID	WB9-1.5	WDOE ACCREDITATION:	C601					
SAMPLE DATA RESULTS								

Chromatogram indicates that it is likely that sample contains lube oil.

Gasoline range product results biased high due to semivolatile range product overlap.

Page 28 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB10-3		D/ COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-23 06/16/2017 6/16/2017 11:00:00 AM C601		
		SAMPLE	DATA RESULTS						
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY		
TPH-Volatile Range	NWTPH-GX	7.7	3.0	1	MG/KG	06/23/2017	SNC		
TPH-Diesel Range	NWTPH-DX	58	25	1	MG/KG	06/23/2017	DLC		
IPH-Oil Range	NW IPH-DX	180	50	1	MG/KG	06/23/2017	DLC		
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Acetone	EPA-8260	0.20	0.13	1	MG/KG	06/21/2017	DLC		
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Tetrachloroethylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045 WB10-3	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 WB10-3		DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:			6/28/2017 EV17060119 EV17060119-23 06/16/2017 6/16/2017 11:00:00 AM C601		
			REPORTING			ANAI YSIS			
ΔΝΔΙ ΥΤΕ	METHOD	DESIII TS	LIMITS	FACTOR		DATE	BY		
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Chlorobenzene	EPA-8260	0.015	0.010	1	MG/KG	06/19/2017	DLC		
1.1.1.2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
m.p-Xvlene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
o-Xvlene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.1.2.2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1.2.3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1 3 5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1 2 4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017			
S Butyl Bonzono	EDA 8260	0	0.010	1	MG/KG	06/19/2017			
	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1 2 Dichlorobonzono	EPA 9260	0	0.010	1	MC/KC	06/19/2017	DLC		
1,3-Dichlorobenzene	EPA-0200	0	0.010	1	MC/KC	06/19/2017	DLC		
N Rutylbonzono	EPA-0200	0	0.010	1	MG/KG	06/19/2017			
1 2 Dichlorobonzono	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1,2-Dichlorobenzene	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
1.2.4 Trichlorohonzono	EPA 8260	0	0.030	1	MG/KG	06/19/2017			
Hoxachlorobutadiono	EPA 8260	0	0.010	1	MG/KG	06/19/2017			
Nephthelene	EPA 9260	0	0.010	1	MC/KC	06/19/2017			
	EPA-0200	0	0.010	1	MC/KC	06/19/2017			
1,2,3-Thchlorobenzene	EPA-8200	0	0.010	Ι	NIG/KG	06/19/2017	DLC		
	METHOD					ANALYSIS DATE	ANALYSIS BY		
SUKRUGATE	METHOD	%REC					0110		
	NWTPH-GX	89.1				06/23/2017	SNC		
U25	NWTPH-DX	104				06/23/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	97.3				06/19/2017	DLC		
1,2-Dichloroethane-d4	EPA-8260	98.7				06/21/2017	DLC		

1,2-Dichloroethane-d4EPA-826098.706/21/2017Toluene-d8EPA-826091.906/19/2017Toluene-d8EPA-826010206/21/2017

DLC

DLC

Page 30

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	Terracon 21905 - 64th Ave W, S Mountlake Terrace, W	uite 100 A 98043	DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-23	
CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Carol Lybeer 81165045 WB10-3		DATE RECEIVED: COLLECTION DATE: WDOE ACCREDITATION:	06/16/2017 6/16/2017 11:00:00 C601	AM
		SAMPLE [DATA RESULTS		
SURROGATE	METHOD	%REC		ANALYSIS DATE	ANALYSIS BY
4-Bromofluorobenzene	EPA-8260	98.3		06/19/2017	DLC

06/21/2017

DLC

U - Analyte analyzed for but not detected at level above reporting limit.

4-Bromofluorobenzene

Chromatogram indicates that it is likely that sample contains highly weathered diesel.

EPA-8260

Diesel range product results biased high due to oil range product overlap.

Gasoline range product results biased high due to semivolatile range product overlap.

98.7

Page 31 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	Terracon 21905 - 64th Ave \ Mountlake Terrace	W, Suite 100 e, WA 98043		DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-27		
CLIENT CONTACT:	Carol Lybeer		D	ATE RECEIVED:	06/16/20)17	
CLIENT PROJECT:	81165045	81165045		LECTION DATE:	6/16/201	7 11:40:00	AM
CLIENT SAMPLE ID	WB11-9.5		WDOE AC	CREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ΔΝΔΙ ΥΤΕ	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/23/2017	SNC
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/22/2017	DLC
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Acetone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC

U

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Tetrachloroethylene

EPA-8260

0.010

MG/KG

1

06/19/2017

		CERTIFIC	ATE OF ANAL 1913					
CLIENT:	Terracon 21905 - 64th Ave Mountlake Terrace	W, Suite 100 e, WA 98043		DATE: 6/28/2017 ALS JOB#: EV17060119 ALS SAMPLE#: EV17060119-27				
CLIENT CONTACT.					6/16/20	/// 7 11·/0·00		
CLIENT PROJECT.	01100040 WD44.05				0/10/201	17 11.40.00	Alvi	
CLIENT SAMPLE ID	WB11-9.5		WDOE AC	CREDITATION:	C601			
		SAMPLE	E DATA RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY	
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC	
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,1,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Ethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC	
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
o-Xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromoform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Isopropylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,1,2,2-Tetrachloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,3-Trichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
2-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,3,5-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
4-Chlorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
T-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2.4-Trimethylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
S-Butvl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
P-Isopropyltoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
N-Butvlbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2-Dibromo 3-Chloropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC	
1.2.4-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Hexachlorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
Naphthalene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1.2.3-Trichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC	
1,2,0 111011010001120110	2.7.0200			•		00,10,2011		
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY	
TFT	NWTPH-GX	100				06/23/2017	SNC	
C25	NWTPH-DX	111				06/22/2017	DIC	
1.2-Dichloroethane-d4	EPA-8260	97.6				06/19/2017	DIC	
Toluene-d8	EPA-8260	95.0				06/19/2017		
4-Bromofluorobenzene	EPA-8260	97.9				06/19/2017	DLC	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 33

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

		CERTIFIC	ATE OF ANALYSIS						
CLIENT:	Terracon 21905 - 64th Ave V Mountlake Terrace	W, Suite 100 e, WA 98043		DATE: ALS JOB#: ALS SAMPLE#:	6/28/2017 EV17060119 EV17060119-28				
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	Carol Lybeer 81165045		DATE RECEIVED: COLLECTION DATE:			06/16/2017 6/16/2017 11:50:00 AM		
CLIENT SAMPLE ID	WB12-3		WDOE AC	CREDITATION:	C601				
		SAMPLE	DATA RESULTS						
ΔΝΔΙ ΥΤΕ	METHOD		REPORTING LIMITS	DILUTION FACTOR		ANALYSIS DATE	ANALYSIS BY		
TPH-Volatile Range	NWTPH-GX	U	3.0	1	MG/KG	06/23/2017	SNC		
TPH-Diesel Range	NWTPH-DX	U	25	1	MG/KG	06/22/2017	DLC		
TPH-Oil Range	NWTPH-DX	U	50	1	MG/KG	06/22/2017	DLC		
Dichlorodifluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Vinyl Chloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Tetrachloride	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trichlorofluoromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Carbon Disulfide	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Acetone	EPA-8260	0.43	0.19	1	MG/KG	06/21/2017	DLC		
1,1-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Methylene Chloride	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC		
Acrylonitrile	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Methyl T-Butyl Ether	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Butanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Cis-1,2-Dichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Chloroform	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,1-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Benzene	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC		
Trichloroethene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,2-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Dibromomethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Bromodichloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Trans-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
4-Methyl-2-Pentanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
Toluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
Cis-1,3-Dichloropropene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
1,1,2-Trichloroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		
2-Hexanone	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC		
1,3-Dichloropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC		

U

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Tetrachloroethylene

EPA-8260

0.010

MG/KG

1

06/19/2017

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Terracon 21905 - 64th Ave V Mountlake Terrace Carol Lybeer 81165045 WB12-3	W, Suite 100 e, WA 98043 SAMPLE	DA COLI WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: LECTION DATE: CCREDITATION:	6/28/2017 EV17060119 EV17060119-28 06/16/2017 6/16/2017 11:50:00 AM C601		
			REPORTING				
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR		DATE	BY
Dibromochloromethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dibromoethane	EPA-8260	U	0.0050	1	MG/KG	06/19/2017	DLC
Chlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,1,2-1 etrachioroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Etnylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
m,p-Xylene	EPA-8260	U	0.020	1	MG/KG	06/19/2017	DLC
Styrene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
o-xylene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromororm	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Isopropyidenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,1,2,2-1 etrachioroethane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,3-1 richioropropane	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Bromobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
N-Propyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
2-Chiorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,3,5-1 nmetnylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
4-Chiorotoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
I-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,4-1 rimetnyibenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
S-Butyl Benzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
P-isopropyitoluene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,3-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,4-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
N-Butylbenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dichlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2-Dibromo 3-Chioropropane	EPA-8260	U	0.050	1	MG/KG	06/19/2017	DLC
1,2,4-1 richlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
Hexachiorobutadiene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
1,2,3-1 richlorobenzene	EPA-8260	U	0.010	1	MG/KG	06/19/2017	DLC
						ANALYSIS /	
SURROGATE	METHOD	%REC				DATE	DT
TFT	NWTPH-GX	86.0				06/23/2017	SNC
C25	NWTPH-DX	114				06/22/2017	DLC
1.2-Dichloroethane-d4	EPA-8260	108				06/19/2017	DLC

 1,2-Dichloroethane-d4
 EPA-8260
 108
 06/19/2017
 DLC

 1,2-Dichloroethane-d4
 EPA-8260
 97.9
 06/21/2017
 DLC

 Toluene-d8
 EPA-8260
 101
 06/19/2017
 DLC

 Toluene-d8
 EPA-8260
 97.7
 06/21/2017
 DLC

Page 35

		CERTIFICA	TE OF ANALYSIS		
CLIENT:	Terracon 21905 - 64th Ave W Mountlako Torraco	/, Suite 100	DATE: ALS JOB#:	6/28/2017 EV17060119	
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	WA 90043	DATE RECEIVED: COLLECTION DATE:	06/16/2017 6/16/2017 11:50:00	AM
CLIENT SAMPLE ID	WB12-3		WDOE ACCREDITATION:	C601	
		SAMPLE I	DATA RESULTS		
				ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC		DATE	BY
4-Bromofluorobenzene	EPA-8260	101		06/19/2017	DLC
4-Bromofluorobenzene	EPA-8260	96.0		06/21/2017	DLC

Page 36 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

6/28/2017 EV17060119

C601

CLIENT:	Terracon	DATE:
	21905 - 64th Ave W, Suite 100	ALS SDG#:
	Mountlake Terrace, WA 98043	WDOE ACCREDITATION:
CLIENT CONTACT:	Carol Lybeer	
CLIENT PROJECT:	81165045	

LABORATORY BLANK RESULTS

MBG-062217S3 - Batch 117386 - Soil by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	MG/KG	3.0	06/22/2017	SNC

U - Analyte analyzed for but not detected at level above reporting limit.

MBG-062717S - Batch 117596 - Soil by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	MG/KG	3.0	06/28/2017	SNC

U - Analyte analyzed for but not detected at level above reporting limit.

MB2-062217S - Batch 117452 - Soil by NWTPH-DX

				REPORTING	ANALYSIS	ANALYSIS	
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY	
TPH-Diesel Range	NWTPH-DX	U	MG/KG	25	06/22/2017	DLC	
TPH-Oil Range	NWTPH-DX	U	MG/KG	50	06/22/2017	DLC	

U - Analyte analyzed for but not detected at level above reporting limit.

MB-061917S - Batch 117313 - Soil by EPA-8260

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Dichlorodifluoromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Chloromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Vinyl Chloride	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Bromomethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Chloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Carbon Tetrachloride	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Trichlorofluoromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Carbon Disulfide	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Acetone	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
1,1-Dichloroethene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Methylene Chloride	EPA-8260	U	MG/KG	0.020	06/19/2017	DLC
Acrylonitrile	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
Methyl T-Butyl Ether	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1-Dichloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
2-Butanone	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
2,2-Dichloropropane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Bromochloromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC

CLIENT:

CLIENT CONTACT:

Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 Carol Lybeer 81165045 DATE: ALS SDG#: WDOE ACCREDITATION: 6/28/2017 EV17060119 C601

CLIENT PROJECT: 81165	045					
		LABORAT	ORY BLANK RESUL	TS		
MB-061917S - Batch 117313	- Soil by EPA-8	260				
Chloroform	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1,1-Trichloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1-Dichloropropene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2-Dichloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Benzene	EPA-8260	U	MG/KG	0.0050	06/19/2017	DLC
Trichloroethene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2-Dichloropropane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Dibromomethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Bromodichloromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
4-Methyl-2-Pentanone	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
Toluene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1,2-Trichloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
2-Hexanone	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
1,3-Dichloropropane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Tetrachloroethylene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Dibromochloromethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2-Dibromoethane	EPA-8260	U	MG/KG	0.0050	06/19/2017	DLC
Chlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Ethylbenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
m,p-Xylene	EPA-8260	U	MG/KG	0.020	06/19/2017	DLC
Styrene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
o-Xylene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Bromoform	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Isopropylbenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2,3-Trichloropropane	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Bromobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
N-Propyl Benzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
2-Chlorotoluene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
4-Chlorotoluene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
T-Butyl Benzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
S-Butyl Benzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
P-Isopropyltoluene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,3-Dichlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,4-Dichlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
N-Butylbenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC

Page 38

CLIENT: Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043 CLIENT CONTACT: Carol Lybeer CLIENT PROJECT: 81165045

DATE: 6, ALS SDG#: E WDOE ACCREDITATION: C

6/28/2017 EV17060119 C601

		LABORAT	ORY BLANK RESULT	S		
MB-061917S - Batch 1173	13 - Soil by EPA-82	260				
1,2-Dichlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2-Dibromo 3-Chloropropane	EPA-8260	U	MG/KG	0.050	06/19/2017	DLC
1,2,4-Trichlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Hexachlorobutadiene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
Naphthalene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC
1,2,3-Trichlorobenzene	EPA-8260	U	MG/KG	0.010	06/19/2017	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 39 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

CLIENT:	Terracon 21905 - 64th Ave W, Suite 100 Mountlake Terrace, WA 98043	WD
CLIENT CONTACT: CLIENT PROJECT:	Carol Lybeer 81165045	

DATE: 6 ALS SDG#: E DOE ACCREDITATION: C

6/28/2017 EV17060119 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 117386 - Soil by NWTPH-GX

				LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	87.8		66.5	122.7	06/22/2017	SNC
TPH-Volatile Range - BSD	NWTPH-GX	85.1	3	66.5	122.7	06/22/2017	SNC

ALS Test Batch ID: 117596 - Soil by NWTPH-GX

		_			LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	110			66.5	122.7	06/28/2017	SNC
TPH-Volatile Range - BSD	NWTPH-GX	113	3		66.5	122.7	06/28/2017	SNC

ALS Test Batch ID: 117452 - Soil by NWTPH-DX

	2				LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
TPH-Diesel Range - BS	NWTPH-DX	99.4			75.5	122.1	06/22/2017	DLC
TPH-Diesel Range - BSD	NWTPH-DX	102	3		75.5	122.1	06/22/2017	DLC

ALS Test Batch ID: 117313 - Soil by EPA-8260

	·····, -···			LIN	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
1,1-Dichloroethene - BS	EPA-8260	95.6		73	138	06/19/2017	DLC
1,1-Dichloroethene - BSD	EPA-8260	92.5	3	73	138	06/19/2017	DLC
Benzene - BS	EPA-8260	91.1		75	138	06/19/2017	DLC
Benzene - BSD	EPA-8260	88.6	3	75	138	06/19/2017	DLC
Trichloroethene - BS	EPA-8260	95.1		75	136	06/19/2017	DLC
Trichloroethene - BSD	EPA-8260	92.5	3	75	136	06/19/2017	DLC
Toluene - BS	EPA-8260	100		76	134	06/19/2017	DLC
Toluene - BSD	EPA-8260	97.7	3	76	134	06/19/2017	DLC
Chlorobenzene - BS	EPA-8260	98.4		79	128	06/19/2017	DLC
Chlorobenzene - BSD	EPA-8260	94.1	4	79	128	06/19/2017	DLC

APPROVED BY

Laboratory Director

Page 40

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

ALS Environmental					Ч С	ain	Of C		b o	11						ALS Job#	(Lat	poratory	Jse On	(VI	
B620 Holly Drive Everett, WA 9821 Phone (425) 356	, Sulte 100)8 -2600			Labo	orato	ory .	Anal	ysi	с С	edu	lest					EV175	990	//c	6		
(ALS) Fax (425) 356 http://ww	-2626 w.alsglobal.c	шо										1 [°]	Dat	ed l	1	Page		đ	~		_
PROJECT ID: 8 11 6 50	45				ANAL	YSIS F	EQUE	STED							Ē	DTHER (Spe	cify)				
REPORT TO COMPANY: TE C'VGLON	Cons	U Henry	SINC	(JC)								WIS	<u>ו</u>		🗌 sche						
MANAGER: Carol Ly L	202											8004	IAT		H 🗆						
ADDRESS: 21905 69	14 AVC	3	sui te	100			0928 A 0928 A		0		0728 A	AGE V			fest					ίN	
Mantake Ter	acc	₹3	4304	2			E py EP	0	PA 826	(10)	by EP/	4 (HA9)			□ 0 \·				S	ОШС	
PHONE: 44>-///-5>0		5	- Conserved	10 220			RTEX	PA 826	E by E	(lio	spuno	shoons			-im92				NEB	сои	
INVOICE TO COMPANY:					}	,		I∃ ýd s	punodu	no 0020	dmoD	1 Adroce	RCR	۸)					IATNO	000	
ATTENTION:							021 [elitslo	no⊃: R ∆G∃	8 493	oinsg			jiced	DV [, , ,			F CC	N C	
ADDRESS:					-DX -HCID	XĐ-	8 A93 \ 3 A93 y	oV bets	DinsgnO		atile Or	ic Arom	MTCA-	Other (S	etals	70			EB O	NED I	
					нату	НЧТү	BE P	uəɓo	atile (B / EI	B/E	lovim	hchci	(d d) elet	M-d1	1-			8ML	IEOEI	
SAMPLE I.D.	DATE	LIME		, LAB#			T8 TM	εΗ		ED	IBS	04	eM	θM	эт				אר	38	
1. WIS 1-2	8-16-11	20	Ī	_		/		,	$\overline{\langle}$			_									
2.WB1-9		<u>گر</u> ح	_	2												×					
3.WB2-4.5		824		Μ	×	\times			$\overline{\times}$												
4.WB2-9.5		830		4																	
5.WB3-4		846		У		X			X												
6.WB3-7.5		850		9					r						-	×					
7.WB3-9.5		851		7												×					
8.WB4-1.5		900		8	×	×			\rightarrow												
و. WB4-8.5		905		6												×					
10.	Ņ		Y																		
SPECIAL INSTRUCTIONS																					
SIGNATURES (Name, Compar	y, Date, Tim	je);	6-1	[-], 		0 20		Orgar	ic, M	ețals {	š Inor	TURI ganic	AARC	UND /sis	REQL	ESTED in Bus	siness [OTHEI	Days*			
Received By:	Tollan,	AL.	2, 6-6	5-17,	13/	0	1	10 Standard		H a			alysis	SAME		Specify:					
2. Relinquished By: Received By:							I		otand An	X			AME								

*

*Turnaround request less than standard may incur Rush Charges

Received By:__

	100				Ch	ain O	Of C	usto	/vp					-	ALS	#dol S	(Labo	ratory Us	e Only)	ſ
Everett, WA 98208 Phone (425) 356-21	000 000			Labo	rato	ry A	nal	/sis	Rec	ines	ŗ				Ś	170	0 9	611		
(ALS) Fax (425) 356-2 http://www.	626 alsglobal.co	Ę									¥	Da	fe		Pag	e		 J	M	
PROJECT ID: RII 650	52				ANALY	SIS RI	EQUES	TED						\square	DTHER	(Speci	fy)			
REPORT TO COMPANY: TEMECON PROJECT MANAGER: Care Ly ADDRESS:	2 CON	-t rs	ata				V EPA 8260	8260		EPA 8270	MIS 0728 A93 yd (Hi	□ 1808 A9∃ vd se		□ Pest □ Herbs □						;NOI
PHONE: P.O. #:	FAX: E-MAIL:						MTBE by	EPA 8260	SIM (water)	λq spunodu (IIOS)	A9) anodració			oV-ime2					SAINERS	
INVOICE TO COMPANY:						,		vd seli	, 8560	0928 /	o Hydro		((lic)	AOV	(1				TNOC	100E
ATTENTION: ADDRESS:					DX НСІД	XĐ	EPA 802	tsloV bete O Dingeni	C PÀ Eb	tile Organ	itsmonA c	2808 A93	ther (Spe	slate	70				EB OF (ED IN
			L C) (±	: (-НЧТИ	-HqTV	LBE Ρλ	snegolı Delitsi	03 / 80	ua / ac	hycyclic	3 Vd 8(O slate	ЭМ-91	Н				IBMU	SCEIV
1. WBS-4	1-16-17	920 920	So'i	/0	ΛN ΛN	۸N		ьН	ED	əs nə	04	ЪЧ	PW	DT TC	×				N	18
2. WB5-9.5	_	925		1	$ \times$	\times		X												
3. WBE-4		930		/2	\times	\times		$\left \right. \right. $												
4. W B6-6		935		/3										. 7						
5. WB 6-9.5		046		14										•	×					
6.WB7-1.5		0001		/5											X					
7. WB7- 6		1005		16	X	\times		X												
8. WB7-9		1010		17	\otimes	\bigotimes									X					
9. WBB-1.5		lois		18	\times	$\boldsymbol{\times}$		\times												
10. WB B-9.5	У	1025	Ŷ	19											X					
	Added	6/23/1	7 on 3	- day T	AT.	G														
SIGNATURES (Name, Company, 1. Relinquished By:	Date, Time		12-6-1	1/1/		0	C .	Drganic), Metal	s & Inc	TUF organi	NAR(Ana	DUND lysis	REQI	JESTED Specify	in Busi	ness Do DTHER	ays*		
Received By: // CM/ /0//	en, ,	9/574	-1-01-	, 13/1	0			Fue	K ^s		v	nalysi	S							
Received Bv:									ndand	3	-	DAY								
(h passed)									نـــ					*Turn	round requ	est less thai	n standard	may incur l	Rush Ch	rges
Charge:																				

Rush																				
incur																				
may																				
standard																				
than																				
less																				
request																				
*Turnaround																				

Specify:

X

X X

er Z

 $\times \times$

53 22

1100

 \sim

4. WB10-

110

24

S

1130

3.5

6. WB11-

WG 10-9

ີ່ ທີ

7. WBII-

92 77

1135 0711

 $\boldsymbol{\lambda}$

5 Y

S.

X

ca

2 >

 \times

R e G

120

133

10 W B12-9.5

9. WB12- 2

WB11-9.5

ö

×

X

ALS Environmental					ひ ひ	air	ð	С С	isto	_ ∧p						_	4	doL S.J	#	(Labo	ratory	Jse Onl	~
Bozu Holly Drive Everett, WA 9820 Phone (425) 356	, Suite 100 38 -2600			Labo	rat	ory	An	aly	sis	Ľ.	nba	est					P	1/	206	0	19		
ALS) Fax (425) 356 http://ww	-2626 w.alsglobal.co	m									:			Da	e		a l	age	3		đ	Μ	
PROJECT ID: 811650	SA				ANA	-YSI	REQ	UESI									OTHE	R (S	ecify				1 1
REPORT TO COMPANY: COMPANY:	on Cov	+1081	ents	inc.									WIS			🗌 sche							
MANAGER: Carol	Lybeer	l											S 0728			йн □							
ADDRESS:							0928 Aq	0928 Aq				0728 Aq	by EPA			jz99 [
	, , , , , , , , , , , , , , , , , , ,						∃∃ ∖d X	IE by El	09 68 89	ater)		93 yd s	(HA9) s			_ loV-ii				<u> </u>		Sł	
PHONE:	- YAL						ΞŢ	ЭШ	78	(m)	(pur	uo	_) 8 		nə						EE	
P.O. #:	E-MAIL:						8	N -	A91	WIS	(lios)	nodu	- cstp	-48: 		S						NI¥.	
INVOICE TO COMPANY:			-						λq se	8560 S	8560	noDo	Hydro	08 	بر))] 40		-			_	TNO	
ATTENTION:							1208	1208	litelo	EPA.	₽₽	inegr	oiten		Spec	۸ [()					DF C	
ADDRESS:					HCID	-DX	EPA 8	A93 \	V bets	C pl	OC pÀ	O elite	c Aron	8 AYA) ther () etals (70) HE	
					Hd	Hd.	κ pλ	ΕP	nep) eli) El	13 /	lovi	iloyo	γ-sια λα) els	M-9	1					aM	
SAMPLE I.D.	DATE	TIME	ТҮРЕ	LAB#	LMN		81E	атм	olsH	EDB	ED8	mə2	Polyo	PCB	steM	тсп	ナ					NΝ	
1. WB9-1.5	6-16-17	1035	1105	20		$\frac{x}{\sqrt{x}}$	X.	en	\times														
2. WBG-7. 5		oho!		21		_	2	~		,							>						
3. WB9-9.5		shoi		22													\mathbf{x}						
														$\left \right $			-		-	-	-	-	_

RECEIVED IN GOOD CONDITION?

TURNAROUND REQUESTED in Business Days* ganic Analysis Organic, Metals & Inorganic Analysis SAME Fuels & Hydrocarbon Analysis -~ ო 10 Standard /3/0 1310 ñ + 425, 6-16-1 11:05 80 SIGNATURES (Name, Company, Date, Time): 42) 011 SPECIAL INSTRUCTIONS 0 :0/ </ </ Received By: //w//1 2. Relinquished By: 1. Relinquished By:

00

10:01

Received By:_

APPENDIX E – TABLE 12.1 GUIDELINES FOR REUSE OF PETROLUEM-CONTAMINATED SOIL

Table 1	I2.1 Guidel	ines for Reus	se of Petroleun	n-Contaminat	ed Soil			
			Soil Cate	gory <mark>(8)(9)(10)</mark>				
Parameter	Analytical Method	1 No detectable Petroleum Components (mg/kg)	2 Commercial Fill Above Water Table (mg/kg)	3 Paving Base Material & Road Construction (mg/kg)	4 Landfill Daily Cover or Asphalt Manufacturing (mg/kg)			
Total Petroleum Hydr	rocarbons (1)(2)	See Table 7.1 for	petroleum product	s that fall within th	nese categories.			
Gasoline Range Organics	NWTPH-Gx	<5	5 - 30	>30 - 100	>100			
Diesel Range Organics	NWTPH-Dx	<25	25 - 200	>200 - 500	>500			
Heavy Fuels and Oils*	NWTPH-Dx	<100	100 - 200	>200-500	>500			
Mineral Oil	NWTPH-Dx	<100	100 - 200	>200-500	>500			
Volatile Petroleum Components								
Benzene	SW8260B	< 0.005	0.005 - 0.03	0.03 or less	See Table 12.2			
Ethylbenzene	SW8260B	< 0.005	0.005 - 6	6 or less	>6			
Toluene	SW8260B	< 0.005	0.005 - 7	7 or less	>7			
Xylenes (3)	SW8260B	< 0.015	0.015 - 9	9 or less	>9			
Fuel Additives & Ble	nding Componen	ts						
(MTBE) Methyl Tert- Butyl Ether	SW8260B	<0.005	0.005 - 0.1	0.1 or less	>0.1			
Lead	SW6010A	<17	17 - 50	>50 - 220	See Table 12.2			
Other Petroleum Con	nponents							
Polychlorinated (4) Biphenyls (PCBs)	SW8082	<0.04	<0.04	<0.04	See Table 12.2			
Naphthalenes (5)	SW8260B	< 0.05	0.05 - 5	5 or less	>5			
cPAHs (6)	SW8270C	< 0.05	0.05 - 0.1	>0.1 - 2	>2			
Other Petroleum Cha	racteristics (App	lies to soils cont	aminated with any p	petroleum product	t.)			
Odors	Smell	No detectable odor						
Staining	Visual	No unusual color or staining						
Sheen Test	See Footnote # 7	No visible sheen						
IMPORTANT: See Ta Test soil for the para *Does NOT include w "<" means less than	able 12.2 and the meters specified vaste oil contamin ; ">" means grea	footnotes to this in Table 7.2. nated soils, which ter than	Table on the follow	ving pages! ed of in a landfill.				

Appendix J Critical Areas Report

DRAFT CRITICAL AREAS REPORT/ SENSITIVE AREAS STUDY

25TH AVENUE NORTHEAST FLOOD REDUCTION PROJECT

> Prepared for City of Shoreline and Louis Berger

Prepared by Herrera Environmental Consultants, Inc.

Note:

Some pages in this document have been purposely skipped or blank pages inserted so that this document will copy correctly when duplexed.

CRITICAL AREAS REPORT/ SENSITIVE AREAS STUDY

25TH AVENUE NORTHEAST FLOOD REDUCTION PROJECT

Prepared for City of Shoreline Contact: John Featherstone Public Works Department 17500 Midvale Avenue North Shoreline, Washington 98133

and

Louis Berger Contact: Mike Giseburt 520 Pike Street, Suite 1005 Seattle, Washington 98101

Prepared by Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206-441-9080

> DRAFT September 19, 2016

CONTENTS

Disclaimer	v
Herrera Qualifications	vi
Executive Summary	ES-i
Introduction	1
Project Setting	1
Study Objectives	3
Applicable Laws and Regulations	3
Clean Water Act Sections 404 and 401	4
Washington State Laws	4
City of Shoreline Code	4
City of Lake Forest Park Code	5
Methods and Materials	7
Review of Available Information	7
Wetland Delineation	8
Wetland Classification, Rating, and Functional Assessment	9
Wetland Classification	9
Wetland Rating	9
Wetland Functional Assessment	10
Fish and Wildlife Habitat Conservation Area Delineation and Classification	10
Results	13
Analysis of Available Information	13
Previously Mapped Wetlands and Streams	13
Mapped Soils	13
Climate Data	13
Fish Habitat Use	15
Wildlife Habitat Use	15
Analysis of Wetland Conditions	15
Evaluation of Wetland Functions	20
Wetland A	20

Wetland B	20
Analysis of Fish and Wildlife Habitat Conservation Areas	22
Ballinger Creek	22
Impacts Analysis	25
Mitigation	25
Maintenance and Monitoring	25
References	27

APPENDICES

Appendix A	Wetland Delineation Methods
Appendix B	Wetland B Delineation Data Sheets and Rating Forms
Appendix C	City of Shoreline Maintenance Facility, Wetland and Stream Delineation Report (The Watershed Company 2016)

TABLES

Table ES-1.	Wetlands Delineated in the Study Area for the 25th Avenue NE Flood Reduction Project	ES-i
Table 1.	Precipitation for the Three Month Period Preceding Field Investigations	15
Table 2.	Wetlands Delineated in the Study Area for the 25th Avenue NE Flood Reduction Project	16
Table 3.	Summary for Wetland A	18
Table 4.	Summary for Wetland B	19
Table 5.	Individual Wetland Function Scores for Wetlands in the Study Area for the 25th Avenue NE Flood Reduction Project.	21
Table 6.	Stream Summary Table—Ballinger Creek	23

FIGURES

Figure 1.	Vicinity Map for the 25th Avenue NE Flood Reduction Project	2
Figure 2.	Previously Mapped Wetlands and Streams in the Vicinity of the 25th Avenue NE Flood Reduction Project	.14
Figure 3.	Wetlands and Streams Delineated in the Project Area for 25th Avenue NE Flood Reduction Project	.17

DISCLAIMER

Herrera Environmental Consultants, Inc. has prepared this report for use by the City of Shoreline, Washington. The results and conclusions in this report represent the professional opinion of Herrera Environmental Consultants, Inc. They are based upon examination of public domain information concerning the study area, site reconnaissance, and data analysis.

The work was performed according to accepted standards in the field of jurisdictional wetland determination and delineation using the *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987) and the *Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region* (Environmental Laboratory 2010). In addition, work was conducted according to accepted standards of determining the ordinary high water mark (OHWM) of streams using the definition set forth in Washington Administrative Code 173 22 030(11) and *Determining the Ordinary High Water Mark on Streams in Washington State* (Olson and Stockdale 2010). However, final determination of jurisdictional wetland and OHWM boundaries pertinent to Section 404 of the Clean Water Act is the responsibility of the Seattle District of the US Army Corps of Engineers. Various agencies of the State of Washington and local jurisdictions may require a review of final site development plans that could potentially affect zoning, buffer requirements, water quality, or habitat functions of lands in question. Therefore, the findings and conclusions in this report should be reviewed by appropriate regulatory agencies before any detailed site planning or construction activities.

HERRERA QUALIFICATIONS

Established in 1980, Herrera Environmental Consultants, Inc. (Herrera) is an innovative, employee-owned, consulting firm focused on three practice areas: water, restoration, and sustainable development. Herrera's interdisciplinary teams of scientists, engineers, and planners provide scientifically defensible and realistic solutions to complex resources challenges facing municipalities, utilities, government agencies, tribes, nonprofits, and businesses. Herrera's philosophy is to integrate protection of environmental, cultural, and economic values into all of our projects.

The following staff authored this report and conducted field work in support of this report. A summary of their qualifications is provided.

Shelby Petro, MESM, WPIT

Shelby Petro is a wetland scientist and environmental permit coordinator with 8 years of experience in environmental consulting, specializing in natural resources management, wetland science, and regulatory compliance for public and private projects. Shelby conducts biological resources surveys for special-status plant and wildlife species; performs wetland delineations and critical areas assessments; prepares technical reports and documentation for National and State Environmental Policy Act (NEPA and SEPA) compliance; and prepares mitigation plans for impacts to wetlands and streams. Shelby coordinates with local, state, and federal agencies, completes applications, and obtains permits and approvals for project compliance with regulations including Critical Area Ordinances, Shoreline Management Act, State Hydraulic Code, SEPA, NEPA, Endangered Species Act (ESA), and Clean Water Act (CWA) Sections 401 and 404.

Credentials

- MESM, Master of Environmental Science and Management, University of California, Santa Barbara, 2014
- BS, Biology, Indiana Wesleyan University, 2007
- Certificate in Wetland Science and Management, University of Washington, 2015
- WPIT, Wetland Professional in Training, Society of Wetland Scientists, 2015
- Certified Wetland and Wildlife Biologist, Pierce County, 2014 present
- Certified Biological Assessment Junior Author, WSDOT, 2015 present

Julia Munger, WPIT

Julia Munger is a natural resources scientist with 6 years of professional experience in stream, wetland, and forest restoration; integrated pest management; wildlife surveys and habitat assessment; and parks maintenance and construction. Julia has extensive experience in habitat restoration, including the planning, implementation, monitoring and maintenance of restoration and mitigation sites. She has delineated wetland in Washington, Alaska, Oregon, and Montana. She has worked in Washington and California to identify, map, and eradicate invasive plant species. Julia conducts vegetation monitoring of mitigation and restoration sites; wetland and stream delineations; and provides recommendations and technical reports to support permit compliance and performance standards.

Credentials

- BS, Environmental Science, Huxley College at Western Washington University, 2008
- ISA Certified Arborist, International Society of Arboriculture, PN-7903A, 2014
- Certificate in Wetland Science and Management, University of Washington, 2013
- Wetland Professional in Training, Society of Wetland Scientists, 2014
- Commercial Pesticide Applicator with Aquatic Application Credentials, Washington State Department of Agriculture

EXECUTIVE SUMMARY

This critical areas report/sensitive areas study was prepared for the 25th Avenue NE Flood Reduction Project in accordance with current federal, state, and local regulations and guidance. Critical areas/environmentally sensitive areas, including wetlands and streams/fish and wildlife habitat conservation areas, are covered in this report. Other critical areas/environmentally sensitive areas, if present, are covered in separate reports and, therefore, are not mentioned in this report.

Wetland delineations were conducted in compliance with the *Regional Supplement to the US Army Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region* (Environmental Laboratory 2010) and *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987).

The Watershed Company (Watershed 2016) previously delineated one wetland in the study area, Wetland A, and Herrera biologists delineated one additional wetland in the study area, Wetland B (Table ES-1). Wetland A is a riparian wetland along Ballinger Creek within Brugger's Bog Park in the city of Shoreline. Wetland B is a riverine and depressional wetland south of NE 195th Street along Ballinger Creek in the city of Lake Forest Park.

Table	e ES-1. We	tlands Delinea	ted in the Study <i>I</i> Reduction Proje	Area for the 2 ct.	25th Avenue I	NE Flood
Wetland Name	Size of Wetland (square feet/acre)	USFWS Classification ^a	Hydrogeomorphic Classification ^b	Wetland Rating Category	Standard Buffer Width (feet)	Minimum Buffer Width (feet)
A	10,197/0.23	PFO	Riverine	II ^{c,d}	165 ^f	n/a ^f
В	54,808/1.26	PSS/PFO	Riverine,	IIc/IIe	100 ^g	70 ^g
			Depressional			

^a US Fish and Wildlife Service classification is based on Cowardin et al. (1979): palustrine forested (PFO) and palustrine scrub-shrub (PSS).

- ^b Hydrogeomorphic classification is based on Brinson (1993).
- ^c Wetland Category is based on the Washington State Department of Ecology (Ecology) wetland rating system (Hruby 2014).
- ^d The City of Shoreline requires the use of Ecology's 2014 rating system.
- ^e Wetland Category is based on the criteria outlined in Lake Forest Park Municipal Code (LFPMC) 16.16.040.AA. The City of Lake Forest Park does not require the Ecology rating system.
- ^f Wetland buffer widths are based on the Ecology wetland rating and habitat score, per Shoreline Municipal Code (SMC) 20.80.330. Standard buffer widths assume the incorporation of mitigation measures outlined in SMC Table 20.80.330(A)(2). If an applicant chooses not to apply the mitigation measures, then a 33 percent increase in the width of all buffers is required.
- ^g Wetland buffer widths are based on LFPMC 16.16.320.A. The City of Lake Forest Park allows for a minimum buffer width in accordance with the criteria outlined in LFPMC 16.16.320.E.

The ordinary high water marks (OHWMs) of streams within the study area were delineated using the definition provided in the Washington Administrative Code [WAC], Section 222-16-010, which has been adopted by the Cities of Shoreline and Lake Forest Park. In addition, methods in the publication *Determining the Ordinary High Water Mark on Streams in Washington State* (Olson and Stockdale 2010) were applied. Herrera biologists flagged the OHWM of two segments of Ballinger Creek within the study area. The Watershed Company (Watershed 2016) previously delineated the OHWM of Ballinger Creek within Brugger's Bog Park. Ballinger Creek flows south through the study area from Brugger's Bog Park in the north, through a culvert under 25th Avenue NE, in an open channel east of 25th Avenue NE and north of NE 195th Street, through a culvert under NE 195th Street, and continues southeast along the east side of Ballinger Way NE out of the study area.

Within the city of Shoreline, Ballinger Creek is a Type F stream, is regulated as a critical area (fish and wildlife conservation area), and is afforded a 115-foot standard buffer (SMC 20.80.280). Within the city of Lake Forest Park, Ballinger Creek is a Category I stream, is regulated as an environmentally sensitive area (stream), and is afforded a 115-foot standard buffer and 70-foot minimum buffer (LFPMC 16.16.350).

INTRODUCTION

This critical areas report/sensitive areas study was prepared for the 25th Avenue NE Flood Reduction Project (hereafter referred to as the project). The City of Shoreline proposes to reduce flooding along 25th Avenue NE by upgrading two undersized culverts, one along Ballinger Creek at 25th Avenue NE and the second along Ballinger Creek at NE 195th Street.

The project study area begins along Ballinger Creek at the northern boundary of Brugger's Bog Park in the city of Shoreline and ends approximately 300 feet south of the intersection of NE 195th Street and Ballinger Way NE in the city of Lake Forest Park (Figure 1). The Watershed Company (Watershed 2016) delineated wetlands and streams in the study area within Brugger's Bog Park in August 2013 and April 2016. Herrera Environmental Consultants, Inc. (Herrera) conducted an additional wetland and stream delineation in May 2016, the results of which are described herein.

This report describes the conditions of wetlands and fish and wildlife habitat conservation areas (e.g., streams), as well as wetland and stream ratings and required buffer widths. It also identifies applicable federal, state, and local laws and regulations.

Impacts associated with the project and proposed mitigation and monitoring will be incorporated into a future version of this report during Phase II of project design and development.

PROJECT SETTING

The study area is located in the cities of Shoreline and Lake Forest Park, King County, Washington (Figure 1). The study area is in Section 4 of Township 26 North, Range 4 East of the Willamette Meridian (WDFW 2009) on portions of parcels 4022901132, 4022901111, 1324000000, 0426049049, and 8665900022. The study area is in the northern portion of Water Resource Inventory Area (WRIA) 8 (Cedar-Sammamish) within the Lyon Creek drainage basin, which discharges into Lake Washington.

Land use in the surrounding vicinity is a mix of residential, commercial, and park properties. Ballinger Creek flows south through the study area from Brugger's Bog Park in the north, through a culvert under 25th Avenue NE, in an open channel east of 25th Avenue NE and north of NE 195th Street, through a culvert under NE 195th Street, and continues southeast along the east side of Ballinger Way NE and flows into Lyon Creek downstream of the study area. The City of Shoreline's North Maintenance Facility and Shoreline School District's Aldercrest Annex are both large properties located along 25th Avenue NE, adjacent to the study area (Figure 1).

STUDY OBJECTIVES

The objectives of Herrera's study were to:

- Delineate (flag) all wetlands and streams in the study area.
- Classify vegetation classes within delineated wetlands using the US Fish and Wildlife Service (USFWS) classification system (Cowardin et al. 1979).
- Classify all delineated wetlands using the hydrogeomorphic classification system (Brinson 1993).
- Evaluate wetland functions and values using the *Washington State Wetland Rating System for Western Washington: 2014 Update* (Hruby 2014) (also referred to as the Ecology rating system).
- Determine wetland categories and classes; stream type; and applicable wetland and stream buffer widths required by Shoreline and Lake Forest Park municipal codes.
- Identify regulations and guidance applicable to project impacts on wetlands, streams, and buffers set forth by local, state, and federal authorities.
- Classify all streams within the study area according to the Washington Department of Natural Resources (WDNR) Forest Practices Water Typing as described in the Washington Administrative Code (WAC 222-16-031).
- Identify fish and wildlife habitat conservation areas as described by Shoreline Municipal Code (SMC) 20.80.260.
- Identify wildlife habitat conservation areas as described by Lake Forest Park Municipal Code (LFPMC) 16.16.040.DD and 16.16.380.

APPLICABLE LAWS AND REGULATIONS

Wetlands and streams are subject to a variety of federal, state, and local regulations. Federal laws regulating wetlands and streams include Sections 404 and 401 of the Clean Water Act (United States Code, Title 33, Chapter 1344 [33 USC 1344]). Washington State laws and programs designed to control the loss of wetland acreage include the State Environmental Policy Act (SEPA) and Section 401 of the Clean Water Act (administered by the Washington State Department of Ecology [Ecology], as mandated by the Washington State Water Pollution Control Act). The study area is located within the city limits of Shoreline and Lake Forest Park and are, therefore, subject to those jurisdictions' municipal codes, which specify wetland categories/classes, stream types/classes, required buffer widths, development standards, and mitigation requirements for critical or environmentally sensitive areas within their jurisdiction.

Clean Water Act Sections 404 and 401

Section 404 of the federal Clean Water Act regulates the placement or removal of soil or other fill, grading, or alteration (hydrologic or vegetative) in waters of the United States, including wetlands and streams (33 USC 1344). The US Army Corps of Engineers (USACE) administers the permitting program under the act. The permits include nationwide (general) permits for projects involving minor fills, grading, or alteration; and individual permits for projects that require larger areas of disturbance to waters of the United States. USACE does not regulate wetland or stream buffers.

Section 401 of the Clean Water Act requires that proposed dredge (removal) and fill activities permitted under Section 404 be reviewed and certified to ensure that such activities meet state water quality standards. Washington State 401 certification is administered by Ecology for all Section 404 permits. Washington State 401 certification is granted without the need for a separate permit from Ecology for projects that qualify for a Section 404 nationwide permit, meet specific Section 401 certification conditions of the nationwide permit, and meet Ecology 401 General Conditions. If that is not the case, Ecology requires an Individual 401 Water Quality Certification permit.

Washington State Laws

Washington State laws and programs designed to control the loss of wetland acreage include SEPA and Section 401 of the Clean Water Act (a federal law that is implemented in the state by Ecology as noted above and as mandated by the Washington State Water Pollution Control Act).

The Washington Department of Fish and Wildlife (WDFW) administers the Hydraulic Project Approval (HPA) program under the state Hydraulic Code (WAC 220-110), which was specifically designed to protect fish life. An HPA permit is required for projects that will use, divert, obstruct, or change the natural flow or bed of any of the salt or fresh waters of the state.

City of Shoreline Code

The City of Shoreline regulates wetlands, fish and wildlife habitat conservation areas, and adjacent buffers within its jurisdiction as critical areas. Buffers are required around critical areas to protect their functions and values.

Wetlands

The City of Shoreline rates wetlands according to the *Washington State Wetland Rating System for Western Washington: 2014 Update* (SMC 20.80.320; Hruby 2014). Wetlands are rated as Category I, II, III, or IV, according to the level of function they provide and how highly they score on the Ecology rating system. Standard buffer widths defined by SMC 20.80.330 are based on the wetland rating and habitat score.

September 2016

Fish and Wildlife Habitat Conservation Areas

The City of Shoreline designates fish and wildlife habitat conservation area as critical areas that include: 1) areas where State or Federally designated endangered, threatened, and sensitive species have a primary association; 2) areas where State priority habitats and areas associate with State priority species; 3) commercial and recreational shellfish areas; 4) kelp and eelgrass beds and herring and smelt spawning areas; and 5) Waters of the State (SMC 20.80.270). The City of Shoreline types streams in accordance with the WDNR water typing system (WAC 222-16-030; SMC 20.80.270.E). Standard buffer widths are based on stream type (SMC 20.80.280).

City of Lake Forest Park Code

The City of Lake Forest Park regulates wetlands, streams, wildlife habitat conservation areas, and adjacent buffers within its jurisdiction as environmentally sensitive areas. Buffers are required around environmentally sensitive areas to protect their functions and values.

Wetlands

The City of Lake Forest Park categorizes wetlands according to LFPMC 16.16.040.AA. Wetlands are rated as Category I, II, or III, according to criteria outlined in the code. Standard buffer widths defined by LFPMC 16.16.320 are based on the wetland rating. Minimum buffer widths may be authorized in accordance with criteria outlined in LFPMC 16.16.320.E.

Streams

September 2016

The City of Lake Forest Park types streams according to criteria outlined under LFPMC 16.16.040.X. Standard buffer widths are based on stream type (LFPMC 16.16.350). Minimum buffer widths may be authorized in accordance with criteria outlined in LFPMC 16.16.350.G.

Wildlife Habitat Conservation Areas

The City of Lake Forest Park designates wildlife habitat conservation areas as feeding, breeding, and nesting sites for priority, endangered, or threatened species (LFPMC 16.16.040.DD). These areas include: 1) priority habitats with priority species; 2) naturally occurring ponds under 20 acres and their submerged aquatic beds that provide fish or wildlife habitat; 3) Waters of the State; 4) lakes, ponds, streams, and rivers planted with game fish by a governmental or tribal entity; or 5) state natural area preserves and natural resource conservation areas.

METHODS AND MATERIALS

Evaluating the presence, extent, and type of wetlands, streams, and fish and wildlife conservation areas requires a review of available information about the site (e.g., surveys, studies), followed by an onsite wetland and stream delineation and confirmation of existing delineations. The following sections describe the research methods and field protocols for the wetland and stream evaluations. More information about the methodology used in the wetland delineation performed for the project is available in Appendix A.

REVIEW OF AVAILABLE INFORMATION

Herrera staff reviewed available literature to determine the historical and current presence of wetlands and streams in and near the study area. Sources of information included:

- Aerial photographs of the study area and project vicinity
- National Wetlands Inventory map of wetland areas in the study area (USFWS 2014)
- City of Shoreline wetland and stream inventory (Shoreline 2016)
- City of Shoreline Lyon Creek Basin Plan (Shoreline 2015)
- City of Lake Forest Park Sensitive Areas Map (Lake Forest Park 2009a)
- City of Lake Forest Park Surface Water Management Plan (Lake Forest Park 2009b)
- City of Shoreline Maintenance Facility, Wetland and Stream Delineation Report (Watershed 2016)
- Hydrographic data (stream locations) for King County (USGS 2016)
- A Catalog of Washington Streams and Salmon Utilization (WDF 1975)
- SalmonScape computer mapping system (WDFW 2016a)
- Washington State Priority Habitats and Species (PHS) data (WDFW 2016b).
- Washington State Natural Heritage data (WDNR 2016)
- Climate data (NRCS 2016a)
- King County soil survey maps for the study area (NRCS 2016b)
- Hydric soils list and soil unit descriptions for the study area (NRCS 2016c)

WETLAND DELINEATION

The wetland delineation was performed in accordance with the *Regional Supplement to the US Army Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region* (Environmental Laboratory 2010) and *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory 1987).

The methods in the manuals listed above use a three-parameter approach for identifying and delineating wetlands, and rely on the presence of field indicators for hydrophytic vegetation, hydric soils, and hydrology. The methods for evaluating those three parameters are described in Appendix A. The wetland delineation for the project was performed according to procedures specified under the routine wetland determination method (Environmental Laboratory 1987).

To identify potential wetlands, Herrera wetland biologists evaluated field conditions by traversing the study area and noting wetlands, streams, other aquatic features. The biologists evaluated field conditions within 300 feet of the study area boundary in the city of Shoreline and within 150 feet of the study area boundary in the city of Lake Forest Park. For parcels without permission to access, biologists observed the surrounding areas from within the study area boundaries.

A test plot was established for each area that appeared to have potential wetland characteristics. For each test plot, data on dominant plant species, soil conditions in test plots, and evidence of hydrologic conditions were recorded on wetland determination data forms (Appendix B). Plants, soils, and hydrologic conditions were also analyzed and documented in adjacent upland test plot locations. Based on collected data, a determination of wetland or upland was made for each area examined. Observations of wildlife species and signs of their presence were also noted during the field visit.

Following confirmation of wetland conditions in a given area, the wetland boundary was delineated by placing sequentially numbered, pink "WETLAND BOUNDARY" flagging along the wetland perimeter. Test plot locations were marked with pink-and-black-striped flagging. The locations of wetland boundaries and test plots were subsequently surveyed by Perteet. Wetland boundaries outside of the study area were estimated using aerial photography.

For wetlands delineated within Brugger's Bog Park by The Watershed Company (Watershed 2016), Herrera biologists walked the delineated boundary and confirmed that all areas that met the three wetland characteristics within the study area were included in the delineated wetland boundary.

WETLAND CLASSIFICATION, RATING, AND FUNCTIONAL ASSESSMENT

Wetland Classification

Wetlands observed on the study area were classified according to the USFWS classification system (Cowardin et al. 1979). That system is based on an evaluation of attributes such as vegetation class, hydrologic regime, salinity, and substrate. The wetlands were also classified according to the hydrogeomorphic system, which is based on an evaluation of attributes such as the position of the wetland within the surrounding landscape, the source and location of water just before it enters the wetland, and the pattern of water movement in the wetland (Brinson 1993).

Wetland Rating

Wetlands in the city of Shoreline were rated using *Washington State Wetland Rating System for Western Washington: 2014 Update* (Hruby 2014), hereafter referred to as the Ecology rating system. The Ecology rating system categorizes wetlands according to specific attributes such as rarity; sensitivity to disturbance; hydrologic, water quality, and habitat functions; and special characteristics (e.g., mature forested wetland and bog). The total score for all functions determines the wetland rating. The rating system consists of four categories, with Category I wetlands exhibiting outstanding functions and/or special characteristics, and Category IV wetlands exhibiting minimal attributes and functions. The rating categories are used to identify permitted uses in the wetland and its buffer, to determine the width of buffers needed to protect the wetland from adjacent development, and to identify the mitigation ratios required to compensate for potential impacts on wetlands and wetland buffers. The City of Shoreline requires the use of the Ecology rating system (SMC 20.80.320).

Wetlands within the city of Lake Forest Park were rated using the criteria described in LFPMC 16.16.040.AA. Using those criteria, wetlands are rated into one of three categories, Category I, II, or III. Category I wetlands are those that contain federally listed endangered or threatened species; habitat for listed species; 40 to 60 percent permanent open water in dispersed patches with two or more vegetation classes; equal to or greater than 10 acres in size with three or more classes and one of the classes is open water; or wetlands with plant associations of infrequent occurrence that are associated with wetland values and functions. Category II wetlands are those that are greater than 1 acre in size, equal to or less than 1 acre with three wetland vegetation classes or a forested class, contain heron rookeries, or contain raptor nesting trees. Category III wetlands are those that do not meet the criteria for another category and are equal to or less than 1 acre in size with two or fewer wetland classes.

Wetland Functional Assessment

Wetland functions are those physical and chemical processes that occur within a wetland, such as the storage of water, cycling of nutrients, and maintenance of diverse plant communities and habitat that benefit wildlife. Wetland functions are grouped into three broad categories: water quality, hydrologic, and habitat.

- Water quality functions include the potential for removing sediment, nutrients, heavy metals, and toxic organic compounds in the water passing through the wetland.
- Hydrologic functions include reducing the velocity of stormwater, recharging and discharging groundwater, and providing flood storage.
- Habitat functions include providing food, water, and shelter for fish, shellfish, birds, amphibians, and mammals. Wetlands also serve as a breeding ground and nursery for numerous species.

For wetlands within Shoreline and Lake Forest Park, wetland functions were assessed using the *Washington State Wetland Rating System for Western Washington: 2014 Update* (Hruby 2014), which is approved by Ecology for evaluating wetland functions in Washington. This system generates a qualitative functional rating (high, moderate, or low) for each of the functions (water quality, hydrology, and habitat) provided by wetlands. The City of Lake Forest Park, per LFPMC 16.16.040.CC, evaluates wetland functions according to those set forth in the USACE regulations (33 CFR 320.4(b)(2)), which are included in the Ecology rating system (Hruby 2014).

FISH AND WILDLIFE HABITAT CONSERVATION AREA DELINEATION AND CLASSIFICATION

A fish and wildlife conservation area is an area that supports regulated fish or wildlife species or habitats, typically identified by known point locations of specific species, habitat areas, or both. Streams are considered to be one type of fish and wildlife habitat conservation area according to SMC 20.80.270 and LFPMC 16.16.040.DD.

The OHWMs of streams within the study area were delineated using the definition provided in WAC Section 222-16-010, which has been adopted by the Cities of Shoreline and Lake Forest Park. According to that definition, the OHWM of streams is "that mark that will be found by examining the bed and banks and ascertaining where the presence and action of waters are so common and usual, and so long continued in all ordinary years, as to mark upon the soil a character distinct from that of the abutting upland, in respect to vegetation." In addition, methods in the publication *Determining the Ordinary High Water Mark on Streams in Washington State* (Olson and Stockdale 2010) were applied.

To delineate the OHWM, Herrera biologists examined the bed and adjacent banks of streams in the study area for indications of regular high water events. Factors considered when assessing changes in vegetation include:

- Scour (removal of vegetation and exposure of gravel, sand, or other soil substrate)
- Drainage patterns
- Elevation of floodplain benches
- Changes in sediment texture across the floodplain
- Sediment layering
- Sediment or vegetation deposition
- Changes in vegetation communities across the floodplain

Herrera hung white/blue-dotted flagging on vegetation at the site, indicating the horizontal location of the OHWM along the stream. The locations of OHWM flags were subsequently surveyed by Perteet.

For the stream delineated within Brugger's Bog Park by The Watershed Company (Watershed 2016), Herrera biologists walked the mapped OHWM and confirmed the delineated boundary.

Streams within the city limits of Shoreline were classified using the WDNR water-typing system based on WAC 222-16-030. That system is based primarily on fish, wildlife, and human use, and consists of four stream types: Type S, F, Np, or Ns. Type S streams are those surface waters that are inventoried as "Shorelines of the State" under the Shoreline Management Master Program for Shoreline, pursuant to Revised Code of Washington (RCW) Chapter 90.58.030. Type F streams and waterbodies are those known to be used by fish, or meet the physical criteria to be potentially used by fish. Type F streams may or may not have flowing water all year; they may be perennial or seasonal. The City of Shoreline further describes Type F streams as F-anadromous and F-nonanadromous streams (SMC 20.80.260.E). Type F-anadromous streams are those streams where there is naturally recurring use by anadromous fish populations, streams that are fish passable or have the potential to be fish passable by anadromous populations, and streams with planned restoration or removal of dams that will result in a fish passable connection to Lake Washington or Puget Sound. Type F-nonanadromous streams are those streams that contain existing or potential fish habitat but do not have the potential for anadromous fish use due to natural barriers to fish passage. Type Np streams have flow yearround and may have spatially intermittent dry reaches downstream of perennial flow but do not meet the physical criteria of a Type F stream to provide fish habitat. Type Ns streams do not have surface flow during at least some portion of the year, and do not meet the physical criteria of a Type F stream to provide fish habitat.

Streams within the city limits of Lake Forest Park were classified using the criteria outlined in LFPMC 16.16.040.X. That system is based primarily on fish habitat use and consists of Type I, II, and III streams. Type I streams are those that are used at least seasonally by fish for spawning, rearing, or migration; streams that are fish passable from Lake Washington; and streams or parts thereof that are waters of the state (WAC 222-16-031). Type II streams are those that are perennial, non-fish-bearing streams. Type III streams are those that are seasonal, non-fish-bearing streams.

RESULTS

This section discusses the results of the wetland and stream delineations, including a review of information obtained from various references, and an analysis of wetland and stream conditions in the study area as observed during field investigations.

ANALYSIS OF AVAILABLE INFORMATION

The available existing information compiled for the wetland and stream delineation is summarized in the following subsections.

Previously Mapped Wetlands and Streams

The National Wetlands Inventory does not indicate any wetlands within or adjacent to the study area. The City of Shoreline's wetland inventory GIS data indicates one wetland along the boundary between Brugger's Bog Park and the North Maintenance Facility and a wetland along Ballinger Creek within the study area, in addition to two offsite wetlands (Figure 2). The wetland along Ballinger Creek in Brugger's Bog Park was delineated and named Wetland A in 2013 and reconfirmed in 2016 (Watershed 2016). The City of Lake Forest Park's wetland inventory indicates one wetland within Brugger's Bog Park along Ballinger Creek, one wetland located in the southeast corner of the intersection of NE 195th Street and Ballinger Way NE, and several offsite wetlands (Figure 2).

The hydrography GIS data for the study area indicates one stream, Ballinger Creek, flowing south through the study area (Figure 2). The stream then continues generally south until it flows into Lyon Creek and eventually into Lake Washington.

Mapped Soils

No soil data were available for the study area (NRCS 2016b).

Climate Data

Precipitation characteristics in the weeks and months preceding wetland delineation work for the project are important to understand with respect to potential for drier or wetter than normal wetland conditions on the site. Nearby precipitation gage records were evaluated for that purpose. Precipitation data were obtained from the Natural Resources Conservation Service (NRCS) WETS database (NRCS 2016a). The historical average measurements were based on data collected in Seattle, Washington (WETS Station Seattle Sand PT WSFO, WA290 (Latitude 47°41'N, Longitude 122°15'W) for the period of record 1971 to 2000. The station is approximately 8 miles south of the study area.

September 2016

Legend

- Study area
- Sensitive Area Ordinance wetland (King County)
- Wetland (City of Lake Forest Park)
- Wetland (City of Shoreline)
- ----- Stream (King County)
- City limit

Figure 2.

Previously Mapped Wetlands and Streams in the Vicinity of the 25th Avenue NE Flood Reduction Project.

Precipitation was evaluated for a 2-week and a 3-month period prior to field investigations, which occurred on May 31, 2016. Between May 16 and May 30, the historical average precipitation recorded 1.09 inches. Between May 16 and May 30, 2016, 1.18 inches of rain were recorded, which is 0.09 inch above average (NRCS 2016a). In the 3 months preceding the field investigations, the measured rainfall for March was wetter than normal, April was drier than normal, and May fell within the normal conditions (Table 1).

Table 1. P	Precipitation for	r the Three-Mo	onth Period Preceding Field	Investigations.
	WETS Histo Perce (in	rical Rainfall entile ch)	WETS 2016 Measured Rainfall	Condition:
Prior Month 30th 70th		70th	(inch)	Dry, Wet, Normal
March	2.95	4.45	5.22	Wet
April	2.04	3.36	1.57	Dry
May	1.49	2.49	1.63	Normal

Source: WETS Station: Seattle Sand PT WSFO, WA290, 1971–2000 (NRCS 2016a)

Fish Habitat Use

Based on WDFW's SalmonScape and PHS mapping, there is no documented fish habitat use in Ballinger Creek within the study area (WDFW 2016a, 2016b). Approximately 1 mile downstream of the study area, presence of coho salmon (*Oncorhynchus kisutch*) and resident coastal cutthroat trout (*O. clarkii clarkii*) has been documented within Ballinger Creek and further downstream within Lyon Creek (WDF 1979). Both coho salmon and resident coastal cutthroat are State priority species (WDFW 2016b). The culvert under 25th Avenue NE is identified as a total fish passage barrier; the culvert under NE 195th Street is identified as a partial barrier; and several additional partial barriers are documented downstream of the project area (WDFW 2016a).

Wildlife Habitat Use

According to WDFW PHS data (WDFW 2016b), there are no specific locations of priority habitats or species within the study area or immediate vicinity of the study area. The nearest mapped bald eagle (*Haliaeetus leucocephalus*) nest is greater than 1 mile from the study area. The nearest concentration of waterfowl is greater than 1 mile northwest of the study area at Ballinger Lake. The nearest biodiversity area and corridor is approximately 0.7 mile northeast of the study area along Lyon Creek, adjacent to Abbey View Memorial Park.

ANALYSIS OF WETLAND CONDITIONS

Wetland delineation field activities were conducted by Herrera biologists Shelby Petro and Julia Munger on May 31, 2016. The weather conditions during the fieldwork consisted of daytime

September 2016

high temperatures of approximately 78 degrees Fahrenheit (°F), with mostly sunny conditions. It was determined that the growing season (as defined in Appendix A) had begun, because aboveground growth and development of vascular plant species was occurring, as indicated by herbaceous species growing in wetland areas.

Herrera biologists delineated one wetland in the study area, Wetland B, and confirmed the previously delineated boundary of Wetland A (Watershed 2016; Figure 3). Buffer widths shown in Figure 3 provide a representation of the potential regulatory constraints. Actual buffer widths will be dependent upon review of the project and site conditions by the cities of Shoreline and Lake Forest Park (SMC 20.80.310-350, LFPMC 16.16.320-330). Detailed descriptions of wetlands delineated in the study area are provided in Tables 2 through 4. The biologists completed wetland delineation and rating forms (Appendix B) for Wetland B. Detailed information about Wetland A, including delineation and rating forms, are included in Appendix C.

	Та	ble 2. Wetlan 25th Ave	ds Delineated in t nue NE Flood Red	he Study Are uction Proje	ea for the ct.	
Wetland Name	Size of Wetland (square feet/acre)	USFWS Classification ^a	Hydrogeomorphic Classification ^b	Wetland Rating Category	Standard Buffer Width (feet)	Minimum Buffer Width (feet)
A	10,197/ 0.23	PFO	Riverine	II ^{c,d}	165 ^f	n/a ^f
В	54,808/ 1.26	PSS/PFO	Riverine, Depressional	IIc/IIe	100 ^g	70 ^g

^a US Fish and Wildlife Service classification is based on Cowardin et al. (1979): palustrine forested (PFO) and palustrine scrub-shrub (PSS).

^b Hydrogeomorphic classification is based on Brinson (1993).

^c Wetland Category is based on the Washington State Department of Ecology (Ecology) wetland rating system (Hruby 2014).

^d The City of Shoreline requires the use of Ecology's 2014 rating system.

- ^e Wetland Category is based on the criteria outlined in Lake Forest Park Municipal Code (LFPMC) 16.16.040.AA. The City of Lake Forest Park does not require the Ecology rating system.
- ^f Wetland buffer widths are based on the Ecology wetland rating and habitat score, per Shoreline Municipal Code (SMC) 20.80.330. Standard buffer widths assume the incorporation of mitigation measures outlined in SMC Table 20.80.330(A)(2). If an applicant chooses not to apply the mitigation measures, then a 33 percent increase in the width of all buffers is required.
- ^g Wetland buffer widths are based on LFPMC 16.16.320.A. The City of Lake Forest Park allows for a minimum buffer width in accordance with the criteria outlined in LFPMC 16.16.320.E.

Legend

Study area
Parcel
Wetland area

 Surveyed wetland boundary

 Estimated wetland boundary

OHWM

Wetland buffers

- 165-ft buffer (City of Shoreline)
- 100-ft buffer (City of Lake Forest Park)
- **T** 70-ft buffer (City of Lake Forest Park min.) Stream buffers
- 115-ft buffer (City of Shoreline & City of Lake Forest Park - standard)
 - 70-ft buffer (City of Lake Forest Park min.)

Figure 3.

Wetlands and Streams Delineated in the Project Area for the 25th Avenue NE Flood Reduction Project.

	Table 3. Summary for Wetland A.							
Wetland Name	Wetland A							
Location	Southeast corner of Brugger's Bog Park along Bal	linger Creek						
NATE OF		Local Jurisdiction	City of Shoreline					
		WRIA	8					
	Wetland	Wetland Rating (2014)	Category II					
		City of Shoreline Buffer Width	165 feet					
		Cowardin Classification	Palustrine forested					
		Hydrogeomorphic Classification	Riverine					
		Wetland Data Form(s)	Appendix C, DP-1					
		Upland Data Form(s)	Appendix C, DP-2					
Size of Entire Wetland	10,197 square feet (0.23 acre).							
Dominant Vegetation	Wetland A is dominated by a forested community of red alder (<i>Alnus rubra</i>), black cottonwood (<i>Populus balsamifera</i>), and Pacific willow (<i>Salix lucida</i>), with a scrub-shrub community of Sitka willow (<i>Salix sitchensis</i>), red-osier dogwood (<i>Cornus alba</i>), and salmonberry (<i>Rubus spectabilis</i>), and with an emergent community of skunk cabbage (<i>Lysichiton americanus</i>), small-fruited							
Soils	Soils were examined to at least a 16-inch depth and exhibited hydric characteristics. At DP-1, the soil in the top 16 inches below the surface was black (10YR 2/1) sandy loam, with organic accumulations masking redoximorphic features. The soil is naturally problematic as the wetland is located within the active floodplain of Ballinger Creek; therefore, it does not meet any hydric soil indicators but is a hydric soil. At the upland test plot (DP-2), the top 8 inches of soil was a dark brown (10YR 3/3) loam (100 percent). The upland soil profile does not meet							
Hydrology	At DP-1, soils were saturated to the surface with a water table depth of approximately 14 inches. The wetland plot met the hydrology indicators for saturation (A3). Hydrologic inputs to this wetland include overbank flooding from Ballinger Creek, precipitation, groundwater, and runoff from surrounding uplands (Watershed 2016)							
Rationale for Delineation	All three wetland parameters are met.							
Rationale for Local Rating	The City of Shoreline Municipal Code classifies wetlar rating system (Hruby 2014), which rates Wetland A as	nds according to the curres a Category II.	ent Ecology					
Buffer Condition	Buffers adjacent to the wetland consist of pockets of mixed coniferous-deciduous forest and shrubs scattered throughout mowed lawn in Brugger's Bog Park. 25th Avenue NE is located between 100 to 200 feet east of the wetland, and the North Maintenance Facility is located 50 feet south. Invasive species, including Himalayan blackberry (<i>Rubus armeniacus</i>), are dominant downstream of Wetland A along the stream corridor to 25th Avenue NE. Existing buffers provide moderate to low wildlife babitat and writes sweling functions.							

September 2016

	Table 4. Summary for Wetland B.						
Wetland Name	Wetland B						
Location	Southeast of the intersection of NE 195th Street and Ballinger Way NE						
		Local Jurisdiction	Lake Forest Park				
		WRIA	8				
		Wetland Rating	Category II				
		Lake Forest Park Buffer Width	100 feet (standard)/ 70 feet (minimum)				
		Cowardin Classification	Palustrine forested/ scrub-shrub				
		Hydrogeomorphic Classification	Depressional/ Riverine				
	Weitand B	Wetland Data Form(s)	Appendix B, TP-B-WET				
12000		Upland Data Form(s)	Appendix B, TP-B-UPL				
Size of Entire Wetland	Approximately 54,808 square feet (1.26 acres). Not delin project area.	neated in entirety; exte	nds southeast of				
Dominant Vegetation	Wetland B is dominated by a forested community of re- willow, with salmonberry, Sitka willow, red-osier dogwo avens (<i>Geum macrophyllum</i>), and horsetail (<i>Equisetum t</i>	d alder, black cottonwc od, creeping buttercup <i>elmateia</i>) in the unders	od, and Pacific , large-leaf tory.				
Soils	At TP-B-WET, the top 17 inches of soil was black (10YR 2/1) silty clay loam and hemic muck with redoximorphic concentrations (7.5YR 4/6, 5 percent in the matrix). From 17 to 20+ inches below the surface, the soil was greenish gray (10GY 5/1) clay loam, with redoximorphic concentrations (10YR 4/6, 2 percent, in the matrix). This profile meets the criteria for the hydric soil indicators of thick dark surface (A12) and redoximorphic dark surface (F6). The upland soil						
Hydrology	At TP-B-UPL, soils were saturated to the surface with a water table depth of approximately 10 inches. The wetland plot met the hydrologic indicators for saturation (A3) and high water table (A2). Hydrologic inputs to this wetland include water from Ballinger Creek, precipitation, groundwater, and runoff from surrounding uplands. The wetland outlet discharges into Ballinger Creek, which flows south from the project area.						
Rationale for Delineation	All three wetland parameters are met.						
Rationale for Local Rating	The Lake Forest Park Municipal Code classifies wetlands according to specific criteria, which rates Wetland B as a Category II. Wetland B also rates as a Category II using the Ecology rating system (Hruby 2014).						
Buffer Condition	Buffers surrounding the wetland consist of NE 195th Street to the north, apartment buildings to the east and south, and Ballinger Way NE to the west. The vegetated buffer around the wetland consists of mowed lawn to the east and upland trees, shrubs, and invasive species including Himalayan blackberry and English ivy (<i>Hedera helix</i>), in a thin strip to the east of Ballinger Way NE. Existing buffers provide low wildlife habitat and water quality functions.						

EVALUATION OF WETLAND FUNCTIONS

Wetland functions for each wetland within the study area were evaluated according to data in the *Washington State Wetland Rating System for Western Washington: 2014 Update* (Hruby 2014). This system generates a qualitative functional rating (high, moderate, or low) for each of the functions (water quality, hydrology, and habitat) provided by wetlands. A summary of the function scores, the total wetland score, and the associated rating (category) for each wetland is provided in Table 5. The City of Lake Forest Park evaluates wetland functions according to those set forth in the USACE regulations (33 CFR 320.4(b)(2), which are included in the Ecology rating system (Hruby 2014). The functions of Wetland A were evaluated by Herrera using the data collected and provided by The Watershed Company (Watershed 2016; Appendix C).

Wetland A

Wetland A, a riverine wetland, has a moderate potential to improve water quality (i.e., remove toxins) at the site because the wetland has depressions over half the area of the wetland and herbaceous plants greater than 6 inches tall over two-thirds of the area of the wetland that can trap sediments during a flooding event. It has high potential on a landscape level to improve water quality functions because the area nearby generates pollutants. The wetland has a high value to society because it discharges to Lyon Creek, which is on Ecology's 303(d) list of impaired waters (Ecology 2016).

The wetland has a moderate potential to improve hydrologic functions at the site, because the wetland provides overbank storage and the vegetation present can slow down water velocities during flood events. At a landscape level, the wetland has high potential to improve hydrologic functions because the land around the wetland is impacted by development. The wetland has a high value to society because it captures water that would otherwise flow into the Ballinger Creek, where flooding is known to damage human and natural resources.

The wetland has a moderate potential for habitat at the site level. The wetland has a forested class with multiple strata and two hydroperiods, which lends to a low interspersion of habitats, but has a high richness of plant species and multiple special habitat features (e.g., large, downed, woody debris). The wetland has a low potential for habitat on a landscape level, due to the large amount of disturbed habitat adjacent to the wetland. The habitat provided by the site is valuable to society because there are three or more priority habitats within 100 meters of the wetland.

Wetland B

Wetland B, a riverine and depressional wetland, has a moderate potential to improve water quality at the site because the wetland has a highly constricted, permanently flowing outlet; persistent, ungrazed plants throughout most of the area; and seasonal ponding throughout more than a quarter of the wetland area. It has moderate potential on a landscape level to improve water quality functions because the area nearby generates pollutants and the wetland receives stormwater discharges. The wetland has a high value to society because it discharges to Lyon Creek, which is on Ecology's 303(d) list of impaired waters (Ecology 2016).

Table 5. Individual Wetland Function Scores for Wetlands in the Study Area for the 25th Avenue NE Flood Reduction Project.											
	Water Qu	ality Functions R	ating ^a	Functions Hydrologic Rating ^a			Habitat Functions Rating ^a				Washington
											State Department of
Wetland	Site	Landscape		Site	Landscape		Site	Landscape		Total	Ecology Rating
Name	Potential	Potential	Value	Potential	Potential	Value	Potential	Potential	Value	Score ^b	Category ^c
A	М	Н	н	М	Н	Н	М	L	н	22	II
В	М	М	н	М	Н	н	М	L	н	21	II

^a Qualitative ratings of H (high), M (moderate), and L (low) are based on the Washington State Department of Ecology (Ecology) rating system (Hruby 2014).

^b Total score is derived by adding all qualitative ratings together. Low ratings are worth 1 point, while Moderate ratings are worth 2 points, and High ratings are worth 3 points.

^c Wetland category is based on the Ecology rating system (Hruby 2014).

The wetland has a moderate potential to improve hydrologic functions (storage of water) at the site because the wetland has a highly constricted, permanently flowing outlet; ponding up to a depth of 2 feet from the bottom of the outlet; and is relatively large compared to the contributing basin. At a landscape level, the wetland has high potential to improve hydrologic functions because the land around the wetland is impacted by development. The wetland has a high value to society because it captures water that would otherwise flow into Ballinger Creek, where flooding is known to damage human and natural resources.

The wetland has a moderate potential for habitat at the site level. The wetland has two vegetation classes, three hydroperiods, a high richness of plant species, a high interspersion of habitats, and multiple special habitat features (e.g., standing snags). The wetland has a low potential for habitat on a landscape level due to the large amount of disturbed habitat and urbanized area adjacent to the wetland. The habitat provided by the site is valuable to society because there are three or more priority habitats within 100 meters of the wetland.

ANALYSIS OF FISH AND WILDLIFE HABITAT CONSERVATION AREAS

Within the study area, Ballinger Creek is the only fish and wildlife habitat conservation area (SMC 20.80.270; LFPMC 16.16.040.DD). According to SalmonScape and PHS mapping (WDFW 2016a, 2016b), there is no documented fish habitat use in Ballinger Creek within the study area. Coho salmon and resident coastal cutthroat trout presence is documented downstream of the study area; several partial and total fish passage barriers prevent fish movement upstream (WDFW 2016a). The nearest mapped bald eagle nest and waterfowl concentrations are greater than 1 mile from the study area. The nearest biodiversity area and corridor is 0.7 mile from the study area. Furthermore, there are no State or Federally designated endangered, threatened, or sensitive species, State priority habitats, or State priority species within the study area or immediate vicinity of the study area. In addition, there are no commercial or recreational shellfish areas, kelp or eelgrass beds, herring or smelt spawning areas, naturally occurring ponds under 20 acres, waters planted with game fish, State natural area preserves, or natural resource conservation areas within the study area or the vicinity.

Ballinger Creek

Herrera biologists Shelby Petro and Julia Munger completed the stream delineation on May 25, 2016. The OHWMs of two segments of Ballinger Creek were delineated and the OHWM of one segment was confirmed in the study area. Herrera delineated the OHWM of Ballinger Creek in the segment on the northeast corner of the intersection of 25th Avenue NE and NE 195th Street, and the segment of Ballinger Creek in the southeast corner of the intersection of NE 195th Street and Ballinger Way NE for 300 feet south of NE 195th Street (Figure 3). Herrera confirmed the OHWM delineation of Ballinger Creek within Brugger's Bog Park, which was previously delineated by The Watershed Company (Watershed 2016). The stream characteristics are summarized in this section (Table 6).

September 2016

Table 6. Stream Summary Table—Ballinger Creek.				
Stream Name	Ballinger Creek			
Local Jurisdiction	City of Shoreline (north of NE 195th Street); City of Lake Forest Park (south of NE 195th Street)			
WDNR Stream Type	n/a			
Local Stream Rating	Type F-anadromous (Shoreline); Type I (Lake Forest Park)			
Local Jurisdiction Buffer Width	115 feet standard (Shoreline); 115 feet standard/70 feet minimum (Lake Forest Park)			
Documented Fish Habitat Use	No documented habitat use by fish within the study area; however, coho salmon and resident coastal cutthroat trout presence is documented downstream (WDFW 2016a; WDF 1979). The culvert under 25th Avenue NE is identified as a total fish passage barrier; the culvert under NE 195th Street is identified as a partial barrier; and several additional partial barriers are documented downstream of the project area (WDFW 2016a).			
Location of Stream Relative to Project Corridor	Stream flows south through Brugger's Bog Park and Wetland A, under 25th Avenue NE (in a culvert), through an open channel north of NE 195th Street, under NE 195th Street (in a culvert), then continues southeast on the east side of Ballinger Way NE through Wetland B.			
Connectivity (where stream flows from/to)	Stream flows south from Ballinger Open Space into Brugger's Bog Park, through the project area, then continues south through Lake Forest Park where it joins Lyon Creek and flows to Lake Washington.			
Riparian/Buffer Condition	Within Brugger's Bog Park, the stream is surrounded by Wetland A and a forested riparian buffer provides shading and is generally of moderate quality. However, outside of this narrow riparian corridor, the buffer consists of lawn and development. The open segment north of NE 195th Street also has a narrow riparian buffer with adjacent lawn and development. South of NE 195th Street, the stream flows through Wetland B, which provides a forested buffer of generally high quality to the east. The western buffer of the stream is the steep fill slope and gabion wall of Ballinger Way NE. The remainder of the buffer is lawn and development.			

IMPACTS ANALYSIS

To be evaluated in Phase II of the project design and development.

MITIGATION

To be evaluated in Phase II of the project design and development.

MAINTENANCE AND MONITORING

To be evaluated in Phase II of the project design and development.

REFERENCES

Brinson, M.M. 1993. A Hydrogeomorphic Classification for Wetlands. Technical Report WRP-DE-4. US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. August 1993.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. Publication FWS/OBS-79/31. US Department of the Interior, Fish and Wildlife Service, Office of Biological Services.

Ecology. 2016. Water Quality Assessment for Washington, 303(d) Map Tool. Obtained July 1, 2016 from agency website: <<u>http://www.ecy.wa.gov/programs/wq/303d/currentassessmt.html</u>>.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. January 1987.

Environmental Laboratory. 2010. Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region. Technical Report TR-08-13. US Army Corps of Engineers, Engineer Research and Development Center, Wetlands Regulatory Assistance Program, Vicksburg, Mississippi.

Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Washington State Department of Ecology, Olympia, WA. Publication #14-06-029. October 2014.

Lake Forest Park, City of. 2009a. Sensitive Areas Map. Obtained July 1, 2016 from agency website: <<u>http://www.cityoflfp.com/DocumentCenter/Home/View/316</u>>.

Lake Forest Park, City of. 2009b. Surface Water Management Plan. Final Report: Part B, Flood Reduction Planning Study for the Lyon Creek and McAleer Creek Drainage Basins. Prepared by Otak, Inc. December 2009.

NRCS. 2016a. Agricultural Applied Climate Information System. US Department of Agriculture, Natural Resources Conservation Service. Obtained June 27, 2016, from agency website: <<u>http://agacis.rcc-acis.org/53057/wets/results</u>>.

NRCS. 2016b. Soil survey geographic database for King County area, Washington. US Department of Agriculture, Natural Resources Conservation Service. Obtained July 1, 2016, from agency website: <<u>http://soildatamart.nrcs.usda.gov</u>>.

September 2016

NRCS. 2016c. National hydric soils list for the state of Washington. US Department of Agriculture, Natural Resources Conservation Service. Obtained July 1, 2016, from agency website: <<u>http://soils.usda.gov/use/hydric/lists/state.html</u>>.

Olson, P. and E. Stockdale. 2010. Determining the Ordinary High Water mark on Streams in Washington State. Ecology Publication 08-06-001. Washington State Department of Ecology. Revised March 2010.

Shoreline, City of. 2015. Lyon Creek Basin Plan. Prepared by Alta Terra, Osborn Consulting, and The Watershed Company. October 2015.

Shoreline, City of. 2016. Geographic Information System data. Stream and wetland data obtained July 1, 2016 from agency website: <<u>http://maps.shorelinewa.gov/maps/</u>>.

USFWS. 2014. Raster scan data of National Wetlands Inventory wetlands maps. Digital data created in 2016. US Fish and Wildlife Service. Obtained October 28, 2015, from agency website: <<u>http://www.fws.gov/wetlands/index.html</u>>.

USGS. 2016. National Hydrography Dataset Layer for King County, Washington. US Geological Survey. Obtained July 1, 2016, from agency website: <<u>http://nhd.usgs.gov/tools.html</u>>.

Watershed. 2016. Wetland and Stream Delineation Report for the City of Shoreline North Maintenance Facility. The Watershed Company, Kirkland, Washington.

WDF. 1975. A Catalog of Washington Streams and Salmon Utilization. Volume I, Puget Sound Region. Prepared by R.W. Williams, R.M. Laramie, and J.J. Ames for Washington Department of Fisheries, Olympia. November 1975.

WDFW. 2016a. SalmonScape mapping system. Washington Department of Fish and Wildlife. Obtained July 1, 2016, from agency website: <<u>http://wdfw.wa.gov/mapping/salmonscape/index.html</u>>.

WDFW. 2016b. Priority Habitats and Species Database. Provided by Washington Department of Fish and Wildlife. Accessed July 1, 2016. <<u>http://wdfw.wa.gov/conservation/phs/</u>>.

WDNR. 2016. Washington Natural heritage Program. Obtained July 1, 2016, from agency website: <<u>http://www1.dnr.wa.gov/nhp/refdesk/datasearch/</u>>.

APPENDIX A

Wetland Delineation Methods

WETLAND DELINEATION METHODS

The wetland delineation for the 25th Avenue NE Flood Reduction Project was performed in accordance with the Regional Supplement to the US Army Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region (Environmental Laboratory 2010), which is consistent with the Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987). These methods use a three-parameter approach for identifying and delineating wetlands: the presence of field indicators for hydrophytic vegetation, hydric soils, and hydrology. This wetland delineation was performed according to procedures specified for the routine wetland determination method (Environmental Laboratory 1987).

HYDROPHYTIC VEGETATION

Hydrophytic vegetation is characterized by the ability to grow, effectively compete, reproduce, and persist in anaerobic soil conditions resulting from periodic or long-term saturation (Environmental Laboratory 1987). Vegetation must meet at least one of the four indicators (described below) that are used to determine the presence of hydrophytic vegetation in wetlands. Problematic and atypical situations for hydrophytic vegetation are also described in the US Army Corps of Engineers delineation manual and supplement (Environmental Laboratory 1987, 2010).

Plant Species Identification

Plant species were identified using *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1987) and *A Field Guide to the Common Wetland Plants of Western Washington and Northwestern Oregon* (Cooke 1997). The indicator status of each plant species is based on the *National Wetland Plant List* (Lichvar 2016) for the Western Mountains, Valleys, and Coast Region.

Dominant Species Determination

Dominant species are those that contribute more than other species to the character of a plant community. To determine dominance, a vegetation sampling area is determined by the field biologist to accurately characterize the plant community that occurs in the area to be evaluated. These are commonly circular sampling areas, centered on the location of the test plot (where soil and hydrologic data is also collected). The radius of the circle is determined in the field, based on site conditions. In large wetlands, a typical sampling radius would be 2 to 5 meters for tree and sapling/shrub species, and 1 meter for herbaceous species. In a small or narrow wetland (or upland), the radius might be reduced to accurately sample wetland (upland) areas,

thereby avoiding an overlap into an adjacent community having different vegetation, soils, or hydrologic conditions (Environmental Laboratory 2010).

Within the vegetation sampling area, a complete list of plant species that occur in the sampling area is compiled and the species divided into four strata: tree, shrub (including saplings, see criteria below), herb, and woody vines. A plant is included in the tree stratum if it is a woody plant 3 inches in diameter at breast height (dbh) or greater; in the shrub stratum if it is a woody plant less than 3 inches dbh (including tree saplings under 3 inches dbh); in the herb stratum if it is an herbaceous (non-woody) plant; and in the woody vine stratum if it is a woody vine of any height (Environmental Laboratory 2010). To be included in the sampling, 50 percent or more of the plant base must be within the radius of the sampling area. For trees specifically, more than 50 percent of the trunk (diameter) must be within the sampling radius to be included.

A rapid test, dominance test (e.g., the 50/20 rule), or prevalence index are commonly used to determine which species are considered dominant and to assess whether the criteria for hydrophytic vegetation are met at each test plot (Environmental Laboratory 2010). Additional hydrophytic vegetation indicators are discussed in the following section.

To conduct a rapid test (Indicator 1 on the wetland determination data form), the dominant species are evaluated visually and if all are FACW or OBL, the vegetation data passes the rapid test. To conduct a dominance test (Indicator 2 on the wetland determination data form), the absolute areal coverage of the plant species within a stratum are totaled, starting with the most abundant species and including other species in descending order of coverage, until the cumulative coverage exceeds 50 percent of the total coverage for the stratum. The plant species that constitute this first 50 percent of areal coverage are considered the dominant species in the stratum. In addition, any other any single plant species that constitutes at least 20 percent of the total percent cover in the stratum is also considered a dominant species (Environmental Laboratory 2010). The indicator status category for each plant (shown in Table A-1) is also listed on the wetland determination form. If more than 50 percent of the dominant species across all strata are rated OBL, FACW, or FAC, the hydrophytic vegetation dominance test (Indicator 2) is met.

The prevalence index (Indicator 3 on the wetland determination data form) is a weightedaverage wetland indicator status of all plant species in the sampling plot, where weighting is by abundance (Environmental Laboratory 2010). This method is used where indicators of hydric soil and wetland hydrology are present, but the vegetation initially fails the rapid and dominance tests (Indicators 1 and 2). To determine the prevalence index, the absolute cover of each species in each stratum is determined. All species (across all strata) are organized into wetland indicator status groups (i.e., OBL, FACW, FAC, FACU, or UPL) and their cover values are summed within the groups. The formula for the prevalence index is applied. If the prevalence index (which ranges from 1.0 to 5.0) equals 3.0 or less, this hydrophytic vegetation indicator is met.

Table A-1. Plant Indicator Status Categories.						
Indicator Status	Indicator Symbol	Definition				
Obligate wetland plants	OBL	Plants that occur almost always (estimated probability >99%) in wetlands under natural conditions but also occur rarely (estimated probability <1%) in upland areas				
Facultative wetland plants	FACW	Plants that usually occur (estimated probability >67%) in wetlands under natural conditions but also occur (estimated probability 1% to 33%) in upland areas				
Facultative plants	FAC	Plants with a similar likelihood (estimated probability 33% to 67%) of occurring in both wetlands and upland areas				
Facultative upland plants	FACU	Plants that sometimes occur (estimated probability 1% to 33%) in wetlands but occur more often (estimated probability >67% to 99%) in upland areas				
Obligate upland plants	UPL	Plants that rarely occur (estimated probability <1%) in wetlands under natural conditions				
$WET \longleftrightarrow DRY$ $OBL - FACW - FAC - FACU - UPL$						

Source: Environmental Laboratory (1987).

Additional Hydrophytic Vegetation Indicators

The presence of morphological adaptations to wetland conditions in plants that lack a published hydrophytic vegetation indicator status or with an indicator status of FACU or drier is also a hydrophytic vegetation indicator (Indicator 4). Evidence of physiological, morphological, or reproductive adaptations indicating growth in hydrophytic conditions can include, but are not limited to, buttressed roots, adventitious roots, multi-stemmed trunks, or tussocks. To determine whether Indicator 4 is met, the morphological features must be observed on more than 50 percent of the individuals of a FACU species (or species without a published indicator status) living in an area where hydric soil and wetland hydrology are present. On the wetland determination data form, the indicator status of the species with morphological adaptations would be changed to FAC (with supporting notes), and the dominance test (Indicator 2) and/or prevalence index (Indicator 3) would then be recalculated.

Wetland non-vascular plants, referred to as bryophytes and consisting of mosses, liverworts, and hornworts, may also meet the hydric vegetation criteria, under Indicator 5 (Environmental Laboratory 2010). These plants must be present in areas containing hydric soils and wetland hydrology. The percent cover of wetland specialist bryophytes is determined in 10-inch by 10-inch square plots placed at the base of hummocks, if present. The summed cover of wetland specialist bryophytes must be more than 50 percent of the total bryophyte cover in the vegetation sampling area.

The problematic hydrophytic vegetation indicator section in the Corps regional supplement further explains how to interpret situations in which hydric soils and wetland hydrology are present but hydrophytic vegetation Indicators 1 through 5 are lacking (Environmental

Laboratory 2010). Procedures for looking at settings such as areas with active vegetation management (e.g. farms), areas dominated by aggressive invasive species, active floodplains, and low terraces are described, as well as explanations for specific situations, such as seasonal shifts in plant communities, extended drought conditions, and riparian areas.

HYDRIC SOILS

A hydric soil is a soil that is saturated, flooded, or inundated long enough during the growing season to develop anaerobic conditions that favor the growth and regeneration of hydrophytic vegetation (Environmental Laboratory 1987, 2010). The evaluation of existing soil maps (developed by NRCS and other sources) is used to understand hydric soil distribution and to identify the likely locations of hydric soils (by verifying their inclusion on the hydric soils list). Comparison of these mapped soils to conditions found on site help verify the presence of hydric soils.

For on-site soils characterization, hydric soils data were obtained generally by digging test pits at least 20 inches deep and 4 inches wide. Hydric soil conditions were evaluated using indicators outlined in *Field Indicators of Hydric Soils in the United States* (NRCS 2006), and adopted by the *Regional Supplement to the US Army Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region* (Environmental Laboratory 2010).

Hydric soil indicators applicable to the Western Mountains, Valleys, and Coast region include, but are not limited to, the presence of organic soils (i.e., histosols or histic epipedons); sulfidic material (i.e., hydrogen sulfide); depleted, gleyed, or reduced soil matrices; and/or the presence of iron or manganese concretions (Environmental Laboratory 2010). Soil color characterization (i.e., hue, value, and chroma) is a critical tool in determining depleted, gleyed, and reduced soil conditions. Soil color was evaluated by comparing soil colors at test plots to standardized color samples in *Munsell Soil Color Charts* (Munsell Color 2000).

WETLAND HYDROLOGY

Wetland hydrology is indicated by site conditions that demonstrate the periodic inundation or saturation to the soil surface for a sufficient duration during the total growing season. A *sufficient duration* during the growing season is defined as 14 or more consecutive days of flooding, ponding, or presence of a water table at 12 inches or less from the soil surface (Environmental Laboratory 2010). The growing season is the period of consecutive frost-free days, or the longest period during which the soil temperature stays above biological zero (41°F), when measured at 12 inches below the soil surface.

Two indicators of biological activity can be used to determine whether the growing season has begun and is ongoing (Environmental Laboratory 2010):

- Occurrence of aboveground growth and development of at least two non-evergreen vascular plant species growing within the wetland. Examples of this growth include the emergence or elongation of leaves on woody plants and the emergence or opening of flowers.
- Soil temperature, which can be measured once during a single site visit, should be at least 41°F or higher at a depth of 12 inches.

For this assessment, onsite hydrologic indicators were examined at the test plots. Hydrologic indicators include the presence of surface water, standing water in the test pit at a depth of 12 inches or less, saturation in the root zone, watermarks, drift lines, sediment deposits, drainage patterns within wetlands, oxidized rhizospheres surrounding living roots, and water-stained leaves.

REFERENCES

Cooke, S. 1997. A Field Guide to the Common Wetland Plants of Western Washington and Northwest Oregon. Seattle Audubon Society and Washington Native Plant Society, Seattle, Washington. June 1997.

Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi. January 1987.

Environmental Laboratory. 2010. Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys, and Coast Region. Technical Report TR-08-13. US Army Corps of Engineers, Engineer Research and Development Center, Wetlands Regulatory Assistance Program, Vicksburg, Mississippi.

Hitchcock, C.L. and A. Cronquist. 1987. Flora of the Pacific Northwest. University of Washington Press, Seattle, Washington.

Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. The National Wetland Plant List: 2016 wetland ratings. Phytoneuron 2016-30:1-17. US Army Corps of Engineers. Accessed June 27, 2016. <<u>http://rsgisias.crrel.usace.army.mil/NWPL/</u>>.

Munsell Color. 2000. Munsell Soil Color Charts. New Windsor, New York.

NRCS. 2006. Field Indicators of Hydric Soil in the United States, Version 6.0. Edited by G.W. Hurt and L.M. Vasilas. US Department of Agriculture, Natural Resources Conservation Service, in association with the National Technical Committee for Hydric Soils.

APPENDIX B

Wetland B Delineation Data Sheets and Rating Forms

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 25th Avenue NE Flood Reduction Project	City/County: Lake Forest Park	mpling Date: <u>31-Mav-16</u>		
Applicant/Owner: City of Shoreline		State: WA	Sampling Point:	TP-B-UPL
Investigator(s): Shelby Petro, Julia Munger	Section, Township, Range	S 4 T 261	N R _4E	_
Landform (hillslope, terrace, etc.): Lowland	Local relief (concave, conv	Slope: 0.0	<u>)</u> %∕°	
Subregion (LRR): LRR A Lat.:	47.003064 Lo	ng.: 122.301689	Datum:	WGS84
Soil Map Unit Name: none mapped		NWI classific	ation: None	
Are climatic/hydrologic conditions on the site typical for this time of ye	ear? Yes No	(If no, explain in R	emarks.) Scont 2 Yes • 1	Nn O
Are Vegetation , Soil , or Hydrology naturally	problematic? (If needed	, explain any answers	s in Remarks.)	

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area		
Hydric Soil Present?	Yes \bigcirc	No 🖲	$\frac{1}{2} \frac{1}{2} \frac{1}$		
Wetland Hydrology Present?	Yes \bigcirc	No 🖲	within a wetland?		
Pemarks:					

Remarks:

	Absoluto	_Species? Rel Strat	Indicator	Dominance Test worksheet
Tree Stratum (Plot size: 3 m)	% Cover	Cover	Status	
1 Alnus rubra	50	✔ 100.0%	FAC	Number of Dominant Species That are OBL, FACW, or FAC: 4 (A)
2	0	0.0%		
3	0	0.0%		Total Number of Dominant
4	0	0.0%		
Sapling/Shrub Stratum (Plot size: 2 m)	50	= Total Cov	er	Percent of dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1. Acer circinatum	80	✔ 88.9%	FAC	Prevalence Index worksheet:
2. Rubus armeniacus	5	5.6%	FAC	Total % Cover of: Multiply by:
3. Rubus spectabilis	5	5.6%	FAC	0BL species 0 x 1 = 0
4.	0	0.0%		EACW species $52 \times 2 = 104$
5.	0	0.0%		EAC species $180 \times 3 = 540$
	90	= Total Cov	er	
lerb Stratum (Plot size: <u>1 m</u>)				$\begin{array}{c} rac o specilles \\ \hline \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline 0 \\ 0 \\$
1. Equisetum telmateia	2	2.2%	FACW	$\begin{array}{c} \text{UPL specilies} & \underbrace{-1}{-1} & \begin{array}{c} x & 5 \\ y & z \\ z &$
2. Ranunculus repens	40	✓ 43.5%	FAC	Column Totals: 232 (A) <u>644</u> (B)
3. Phalaris arundinacea	50	✓ 54.3%	FACW	Prevalence Index = $B/A = 2.776$
4	0	0.0%		Hydrophytic Vegetation Indicators
5	0	0.0%		1 Panid Test for Hydrophytic Vegetation
6	0	0.0%		
7	0	0.0%		\checkmark 2 - Dominance Test is > 50%
8	0	0.0%		▼ 3 - Prevalence Index is ≤3.0 *
9	0	0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0	0.0%		S Wotland Non-Vaccular Diants 1
11	0	0.0%		
	92	= Total Cov	er	Problematic Hydrophytic Vegetation ⁺ (Explain)
Woody Vine Stratum (Plot size: <u>1 m</u>) 1.	0	0.0%		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
2.	0	0.0%		Hydrophytic
	0	= Total Cov	er	Vegetation Present? Yes • No ·
% Bare Ground in Herb Stratum: $_{ m 8}$				
0				

*Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Depth	pth Matrix Redox Features								_			
(inches)	Color (moist)	%	Color (n	noist)	%	Type ¹	Loc ²	Texture	Remarks		
0-8	10YR	3/2	100						Loam			
8-16	10YR	3/2	98	10YR	4/4	1	С	М	Loam			
				2.5Y	4/1	1	D	М				
16+									C	obbl e		
Type: C=Con	centration. D	=Depletio	n. RM=Red	uced Matrix, C	S=Covere	d or Coat	ed Sand Gr	ains ² Loo	cation: PL=Pore Lining. M=M	atrix		
lydric Soil I	indicators:	(Applical	ble to all L	RRs, unless	otherwise	e noted.)		Indicators for Probler	natic Hydric Soils ³ :		
Histosol (A1)			Sanc	ly Redox (S5)			2 cm Muck (A10)			
Histic Epi	bedon (A2)			Strip	ped Matrix	(S6)			 Red Parent Material (TF2) Other (Explain in Remarks) 			
Black Hist	ic (A3)			Loan	ny Mucky N	Mineral (F	1) (except	in MLRA 1)				
Hydrogen	Sulfide (A4)			Loan	ny Gleyed	Matrix (F	2)					
Depleted	Below Dark S	Surface (A	11)	🔄 Depl	eted Matri	x (F3)						
Thick Dar	k Surface (A ⁻	12)		Redo	ox Dark Su	rface (F6)		³ Indicators of hydrophytic vegetation and			
Sandy Mu	ck Mineral (S	51)		Depl	eted Dark	Surface	(F7)		wetland hydrology mu	st be present,		
Sandy Gle	eyed Matrix (S4)		Redo	ox depressi	ions (F8)			unless disturbed or problematic.			
estrictive L	ayer (if pre	sent):										
Туре:	hhle											
Depth (inc	hes): <u>16</u>								Hydric Soil Present?	Yes 🔾 🛛 No 🔍		
Remarks:												

Hydrology

Wetland Hydrology Indicators:							
Primary Indicators (minimum of one required; c	Secondary Indicators (minimum of two required)						
Surface Water (A1)	Water-Stained Leaves (B9) (except MLRA	Water-Stained Leaves (B9) (MLRA 1, 2,					
High Water Table (A2)	1, 2, 4A, and 4B)	4A, and 4B)					
Saturation (A3)	Salt Crust (B11)	Drainage Patterns (B10)					
Water Marks (B1)	Aquatic Invertebrates (B13)	Dry Season Water Table (C2)					
Sediment Deposits (B2)	Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)					
Drift deposits (B3)	Oxidized Rhizospheres on Living Roots (C3)	Geomorphic Position (D2)					
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Shallow Aquitard (D3)					
Iron Deposits (B5)	Recent Iron Reduction in Tilled Soils (C6)	FAC-neutral Test (D5)					
Surface Soil Cracks (B6)	Stunted or Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)					
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Frost Heave Hummocks (D7)					
Sparsely Vegetated Concave Surface (B8)							
Field Observations:							
Surface Water Present? Yes O No O	Depth (inches):						
Water Table Present? Yes \bigcirc No $oldsymbol{igodol}$	Depth (inches):						
Saturation Present? Yes O No O	Depth (inches): Wetland H	ydrology Present? Yes 🔾 NO 🖲					
Describe Recorded Data (stream gauge, monitor	well, aerial photos, previous inspections), if avail	able:					
Remarks:							

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: 25th Avenue NE Flood Reduction Project	City/County: Lake Forest Park	/King Sa	Sampling Date: <u>31-May-16</u>		
Applicant/Owner: City of Shoreline		State: WA	Sampling Point: TP-B-WET		
Investigator(s): Shelby Petro, Julia Munger	Section, Township, Range	: S 4 T 26N	N R_4E		
Landform (hillslope, terrace, etc.): Channel (active)	Local relief (concave, conv	ex, none): concave	Slope: <u>1.0</u> % / <u>0.6</u> °		
Subregion (LRR): LRR A Lat.:	47.769553 Lo	ng.: 122.301592	Datum: WGS84		
Soil Map Unit Name: none mapped		NWI classific	ation: None		
Are climatic/hydrologic conditions on the site typical for this time of your and the second state of the significant of the second s	ear? Yes ● No ○ tly disturbed? Are "Norm	(If no, explain in Re al Circumstances" pre	emarks.) sent? Yes • No •		
Are Vegetation , Soil , or Hydrology naturally	problematic? (If needed	, explain any answers	in Remarks.)		

Summary of Findings - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🖲	No O	Is the Sampled Area	
Hydric Soil Present?	Yes 🖲	No O	within a Watland?	Yes \bullet No \bigcirc
Wetland Hydrology Present?	Yes 🖲	No O	within a wetland?	
Domosika				

Remarks:

Trop Chartum (Plot size: 3 m)	Absolute	_Sp Re	ecies? I.Strat.	Indicator	Dominance Test worksheet:
	<u>60</u>		60.0%	EAC	Number of Dominant Species
			40.0%		That are OBL, FACW, OF FAC: (A)
			40.0%	FACW	Total Number of Dominant
3		H	0.0%	·	Species Across All Strata: <u>3</u> (B)
4	0	Ш.	0.0%		Percent of dominant Species
Sapling/Shrub Stratum (Plot size: 2 m)	100	= T	otal Cov	er	That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
1.	0		0.0%		Prevalence Index worksheet:
2.	0		0.0%		Total % Cover of: Multiply by:
3.	0		0.0%		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
4.	0		0.0%		EACW species $45 \times 2 = 90$
5.	0		0.0%		$\frac{1}{40} = \frac{1}{40} = \frac{1}{40} = \frac{1}{10}$
		- т	otal Cov		FAC species $-\frac{100}{3} \times 3 = -\frac{170}{3}$
Herb Stratum (Plot size: 1 m)					FACU species $-\frac{1}{2}$ x 4 = $-\frac{1}{2}$
1 Equisetum telmateia	5		5.0%	FACW	UPL species $-\frac{0}{2}$ x 5 = $-\frac{0}{2}$
2 Oenanthe sarmentosa	90		90.0%	OBL	Column Totals: <u>200</u> (A) <u>375</u> (B)
3 Ranunculus repens	5		5.0%	FAC	Prevalence Index = $B/A = 1.875$
4	0		0.0%		
5	0		0.0%		Hydrophytic Vegetation Indicators:
6	0		0.0%		L 1 - Rapid Test for Hydrophytic Vegetation
7	0		0.0%		✓ 2 - Dominance Test is > 50%
8	0		0.0%		✓ 3 - Prevalence Index is \leq 3.0 ¹
9	0		0.0%		4 - Morphological Adaptations ¹ (Provide supporting
10	0		0.0%		data in Remarks or on a separate sheet)
11	0		0.0%		5 - Wetland Non-Vascular Plants
	100	= T	otal Cov	ver	Problematic Hydrophytic Vegetation ¹ (Explain)
Woody Vine Stratum (Plot size: 1 m)					¹ Indicators of hydric soil and wetland hydrology must
1	0		0.0%	·	
2	0	\square	0.0%		Hydrophytic Vegetation
	0	= T	otal Cov	er	Present? Yes • No
% Bare Ground in Herb Stratum: ∩					

*Indicator suffix = National status or professional decision assigned because Regional status not defined by FWS.

Soil

Depth Matrix Redox Features					_				
(inches)	Color (moist)	%	Color (mois	t) <u>%</u>	Type ¹	Loc ²	Texture	Remarks
0-17	10YR	2/1	95	7.5YR 4	/4 5	С	М	Silty Clay Loam	
17-20	10GY	5/1	98	10YR 4	./6 _20	C	M	Clay Loam	
						 	·		
¹ Type: C=Con	 centration. D	=Depletion	n. RM=Red	uced Matrix, CS=	Covered or Coa	ted Sand G	rains ² Loo	cation: PL=Pore Lining. M=Mat	rix
		(Applicat	bie to all L		erwise noted	.)			atic Hydric Solis ³ :
Histosof (pedon (A2) tic (A3)			Stripped	Matrix (S6) Matrix (S6) Nucky Mineral (F1) (except	in MLRA 1)	Red Parent Material (Other (Explain in Rer	TF2) narks)
Hydrogen Hydrogen Depleted M Thick Dar Sandy Mu Sandy Gle	n Sulfide (A4) Below Dark S k Surface (A uck Mineral (S eyed Matrix (Surface (A1 12) 51) 54)	11)	☐ Loamy C ☐ Depleted ✔ Redox D ☐ Depleted ☐ Redox d	ileyed Matrix (f d Matrix (F3) ark Surface (F6 d Dark Surface epressions (F8)	-2) 5) (F7)		³ Indicators of hydrophytic v wetland hydrology must unless disturbed or prob	regetation and be present, lematic.
Restrictive L	ayer (if pre	sent):							
Туре:								Hydric Soil Present?	
Depth (inc	hes):								
Remarks:									

Hydrology

Wetland Hydrology Indicators:						
Primary Indicators (minimum of one required; check all that apply)Secondary Indicators (minimum of two required)						
Surface Water (A1)	Water-Stained Leaves (B9) (ex	cept MLRA Water-Stained Leaves (B9) (MLRA 1, 2,				
High Water Table (A2)	1, 2, 4A, and 4B)	4A, and 4B)				
Saturation (A3)	Salt Crust (B11)	Drainage Patterns (B10)				
Water Marks (B1)	Aquatic Invertebrates (B13)	Dry Season Water Table (C2)				
Sediment Deposits (B2)	Hydrogen Sulfide Odor (C1)	Saturation Visible on Aerial Imagery (C9)				
Drift deposits (B3)	Oxidized Rhizospheres on Livin	g Roots (C3) Geomorphic Position (D2)				
Algal Mat or Crust (B4)	Presence of Reduced Iron (C4)	Shallow Aquitard (D3)				
Iron Deposits (B5)	Recent Iron Reduction in Tillec	Soils (C6) FAC-neutral Test (D5)				
Surface Soil Cracks (B6)	Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A)				
Inundation Visible on Aerial Imagery	(B7) Other (Explain in Remarks)	Frost Heave Hummocks (D7)				
Sparsely Vegetated Concave Surface	(B8)					
Field Observations:						
Surface Water Present? Yes O	No Depth (inches):					
Water Table Present? Yes •	No O Depth (inches): 10					
Saturation Present? Yes •	No O Depth (inches): 0	Wetland Hydrology Present? Yes Son No C				
Describe Recorded Data (stream gaug	ge, monitor well, aerial photos, previous in	spections), if available:				
Remarks:						

RATING SUMMARY – Western Washington

Name of wetland (or ID #):	Wetland B		Date of site visit:	5/31/2016
Rated by Shelby Petro		Trained by Ecology? ☑ Yes □No	Date of training	Mar-15
HGM Class used for rating	Depressional & Flats	Wetland has multip	ole HGM classes? ☑ Ye	es ∏No
NOTE: Form is no Source	ot complete with out of base aerial photo/m	the figures requested (<i>figures can</i> ap Bing 2016	be combined).	
OVERALL WETLAND CATEGORY II (based on functions I or special characteristics)				
1. Category of wetland based on FUNCTIONS Category I - Total score = 23 - 27 X Category II - Total score = 20 - 22 Score for each function based				
	Category III - Total s	core = 16 - 19	on three	

Category IV - Total score = 9 - 15

FUNCTION	Improving Water Quality	Hydrologic	Habitat	
	List app	propriate rating	g (H, M, L)	
Site Potential	М	М	М	
Landscape Potential	М	Н	L	
Value	Н	Н	Н	Total
Score Based on Ratings	7	8	6	21

Score for each function based on three ratings (order of ratings is not important) 9 = H, H, H8 = H, H, H8 = H, H, M7 = H, H, L7 = H, M, M6 = H, M, L6 = M, M, M5 = H, L, L5 = M, M, L4 = M, L, L3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	Category
Estuarine	
Wetland of High Conservation Value	
Bog	
Mature Forest	
Old Growth Forest	
Coastal Lagoon	
Interdunal	
None of the above	Х

Maps and Figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	B-1
Hydroperiods	D 1.4, H 1.2	B-2
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	B-2
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	B-1
Map of the contributing basin	D 4.3, D 5.3	B-3
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	B-4
polygons for accessible habitat and undisturbed habitat		D-4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	B-5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	B-6

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to another figure)		
Boundary of area within 150 ft of the wetland (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetland in Western Washington

For questions 1 -7, the criteria described must apply to the entire unit being rated. If hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1 - 7 apply, and go to Question 8.

- 1. Are the water levels in the entire unit usually controlled by tides except during floods?

 - 1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?
 - □ NO Saltwater Tidal Fringe (Estuarine) □ YES Freshwater Tidal Fringe If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

- ✓ NO go to 3
 If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.
- 3. Does the entire wetland unit meet all of the following criteria?
 - □ The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
 - \Box At least 30% of the open water area is deeper than 6.6 ft (2 m).
 - ☑ NO go to 4

YES - The wetland class is **Lake Fringe** (Lacustrine Fringe)

4. Does the entire wetland unit meet all of the following criteria?

- \Box The wetland is on a slope (*slope can be very gradual*),
- ☐ The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks.
- $\hfill\square$ The water leaves the wetland without being impounded.
- ☑ NO go to 5

 \Box YES - The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

5. Does the entire wetland unit **meet all** of the following criteria?

- ☐ The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,
- ☐ The overbank flooding occurs at least once every 2 years.
- 🗌 NO go to 6

☑ YES - The wetland class is Riverine

NOTE: The Riverine unit can contain depressions that are filled with water when the river is not flooding.

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

□ NO - go to 8 □ YES - The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit	HGM class to
being rated	use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

NOTES and FIELD OBSERVATIONS:

DEPRESSIONAL AND FLATS WETLANDS				
Water Quality Functions - Indicators that the site functions to improve water quality				
D 1.0. Does the site have the potential to improve water quality?				
D 1.1. Characteristics of surface water outflows from the wetland:				
Wetland is a depression or flat depression (QUESTION 7 on key)				
with no surface water leaving it (no outlet). points = 3				
Wetland has an intermittently flowing stream or ditch, OR highly				
constricted permanently flowing outlet. points = 2	2			
Wetland has an unconstricted, or slightly constricted, surface outlet				
that is permanently flowing points = 1				
Wetland is a flat depression (QUESTION 7 on key), whose outlet is				
a permanently flowing ditch. points = 1				
D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic	0			
(use NRCS definitions). Yes = 4 No = 0	0			
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or				
Forested Cowardin classes):				
Wetland has persistent, ungrazed, plants > 95% of area points = 5	F			
Wetland has persistent, ungrazed, plants > $\frac{1}{2}$ of area points = 3	Э			
Wetland has persistent, ungrazed plants > $1/_{10}$ of area points = 1				
Wetland has persistent, ungrazed plants $< \frac{1}{10}$ of area points = 0				
D 1.4. Characteristics of seasonal ponding or inundation:				
This is the area that is ponded for at least 2 months. See description in manual.				
Area seasonally ponded is > $\frac{1}{2}$ total area of wetland points = 4	2			
Area seasonally ponded is $> \frac{1}{4}$ total area of wetland points = 2				
Area seasonally ponded is $< \frac{1}{4}$ total area of wetland points = 0				
Total for D 1 Add the points in the boxes above	9			
Rating of Site Potential If score is: \Box 12 - 16 = H \Box 6 - 11 = M \Box 0 - 5 = L <i>Record the rating on</i>	the first page			

D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in guestions D 2.1 - D 2.3? 0

D 2.0. Does the landscape have the potential to support the water quality function of the site?

D 2.1. Does the wetland unit receive stormwater discharges?

D 2.3. Are there septic systems within 250 ft of the wetland?

generate pollutants?

Source

D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that

Total for D 2Add the points in the boxes above2Rating of Landscape Potential If score is:3 or 4 = HI or 2 = M0 = LRecord the rating on the first page

D 3.0. Is the water quality improvement provided by the site va	aluable to society?		
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to	a stream, river,		1
lake, or marine water that is on the 303(d) list?	Yes = 1	No = 0	I
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list?			1
	Yes = 1	No = 0	I
D 3.3. Has the site been identified in a watershed or local plan	as important		
for maintaining water quality (answer YES if there is a TMDL for the basin in			0
which the unit is found)?	Yes = 2	No = 0	
Total for D 3	Add the points in the boxe	s above	2
Rating of Value If score is: $\Box 2 - 4 = H \Box 1 = M \Box 0 = L$	Record the	rating on	the first page

Yes = 1 No = 0

1

1

0

DEPRESSIONAL AND FLATS WETLANDS		
Hydrologic Functions - Indicators that the site functions to reduce flooding and	stream degra	adation
D 4.0. Does the site have the potential to reduce flooding and erosion?		
D 4.1. Characteristics of surface water outflows from the wetland:		
Wetland is a depression or flat depression with no surface water		
leaving it (no outlet)	points = 4	
Wetland has an intermittently flowing stream or ditch, OR highly		_
constricted permanently flowing outlet	points = 2	2
Wetland is a flat depression (QUESTION 7 on key), whose outlet is		
a permanently flowing alten	points = 1	
that is permanently flowing	pointe – 0	
D 4.2 Depth of storage during wet periods: Estimate the height of ponding above the	points = 0	
the outlet. For wetlands with no outlet, measure from the surface of permanent water of	or if dry the	
deepest part	or in ary, and	
Marks of ponding are 3 ft or more above the surface or bottom of outlet	points $= 7$	
Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet	points = 5	3
☐ Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet	points $= 3$	
The wetland is a "headwater" wetland	points = 3	
Wetland is flat but has small depressions on the surface that trap water	points $= 1$	
Marks of ponding less than 0.5 ft (6 in)	points $= 0$	
D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the	e area of	
upstream basin contributing surface water to the wetland to the area of the wetland ur	nit itself.	
☐ The area of the basin is less than 10 times the area of the unit	points $= 5$	3
The area of the basin is 10 to 100 times the area of the unit	points $= 3$	C C
The area of the basin is more than 100 times the area of the unit	points $= 0$	
L Entire wetland is in the Flats class	points = 5	0
Add the points in the t	ooxes above	8
Rating of Site Potential If score is: $\Box 12 - 16 = H \ \Box 6 - 11 = M \ \Box 0 - 5 = L$ Record	d the rating on	the first page
D 5.0. Does the landscape have the potential to support hydrologic function of the site	?	
D 5.1. Does the wetland unit receive stormwater discharges? Yes:	= 1 No = 0	1
D 5.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate exce Yes :	= 1 No = 0	1
D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive	e human	
land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)?		1
Yes	= 1 No = 0	_
Total for D 5 Add the points in the t	oxes above	3
Rating of Landscape Potential If score is: $\boxed{3} = H$ $\boxed{1}$ or $2 = M$ $\boxed{0} = L$ Record	d the rating on	the first page
D 6.0. Are the hydrologic functions provided by the site valuable to society?		
D 6.1. The unit is in a landscape that has flooding problems. Choose the description to	hat best	
matches conditions around the wetland unit being rated. Do not add points. Choose the	he highest	
score if more than one condition is met.		
I he wetland captures surface water that would otherwise flow down-gradien	t into areas	
where flooding has damaged human or natural resources (e.g., houses or sali	mon redds):	
 Flooding occurs in a sub-basin that is inmediately down- aredient of unit 	nainta 2	
Surface flooding problems are in a sub-basin farther down-	points = 2	2
aradient	nointe – 1	
\Box Flooding from groundwater is an issue in the sub-basin	points = 1	
The existing or potential outflow from the wetland is so constrained	P = 110 - 1	
by human or natural conditions that the water stored by the wetland		
cannot reach areas that flood. Explain why	points $= 0$	
There are no problems with flooding downstream of the wetland.	points = 0	
D 6.2. Has the site been identified as important for flood storage or flood		0
conveyance in a regional flood control plan? Yes	= 2 No = 0	0
Total for D 6 Add the points in the t	ooxes above	2
Rating of Value of score is: $\sqrt{2} \cdot 4 - H$ $\sqrt{1 - M}$ $\sqrt{0 - 1}$	the rating on	the first nage

HABITAT FUNCTIONS - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community. Indicators are Covardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the intreshold of ½ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed Astructures: points = 2 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ½ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 2 types present: points = 1 Sturated only 1 types grossent tidal wetland 2 points Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or nor adjacent to, the wetland Seasonally flowing stream or nor adjacent to, the wetland Seasonally flowing stream or nor adjacent to, the	These questions apply to wetlands of all HGM classes.	
H 10. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed A structures or more: points = 4 Scrub-shrub (areas where trees have > 30% cover) 2 structure: points - 1 Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sthrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested playgon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flowing stream in, or adjacent to, the wetland P points H 1.3. Richness of plant species Contine number of plant species A species A species Seasonally flowing stream in, or adjacent to, the wetland P points H 1.3. Richness of plant species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife. Canadian thistle I you co	HABITAT FUNCTIONS - Indicators that site functions to provide important habitat	
H 11. Structure of plant community. Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ½ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. Aquatic bed A structures or more: points = 4 Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 0 If the unit has a Forested class, check if: The Forested (areas where threes have > 30% cover) 1 structures: points = 0 If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ½ ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or river in, or adjacent to, the wetland Seasonally flowing stre	H 1.0. Does the site have the potential to provide habitat?	
□ Aquatic bed 4 structures or more: points = 4 3 structures: points = 2 3 structures: points = 2 3 structures: points = 0 1 Forested (areas where trees have > 30% cover) 2 structures: points = 0 1 structure: points = 1 2 Seasonally flooded or inundated 4 or more types present: points = 3 3 structures: points = 2 2 coccasionally flooded or inundated 4 or more types present: points = 3 3 structure: points = 2 2 coccasionally flooded or inundated 2 types present: points = 3 2 seasonally flooded or inundated 2 types present: points = 2 2 coccasionally flooded or inundated 2 types present: points = 2 2 coccasionally flowing stream or river in, or adjacent to, the wetland 2 points 2 types present: points = 2 2 coccasionally flowing stream or river in, or adjacent to, the wetland □ □ □ □ □ □ □ 2 points 2 struated only 1 □ □ □ □ □ □ 2 points 2 struates 1 □ □ □ □ □ 2 points 2 struates 1 □ □ □ □ 1 1 1 □ □ □ □ 1 1 □ □ □ □ 1 1 1	H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.	
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see <i>text for descriptions of</i> <i>hydroperiods</i>). Permanently flooded or inundated 4 or more types present: points = 3 Seasonally flooded or inundated 2 types present: points = 1 Saturated only 1 types present: points = 0 Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream or niver in, or adjacent to, the wetland Lake Fringe wetland 2 points H 1.3. Richness of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 1 < 5 species (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. None = 0 points Low = 1 point All there diagrams	 Aquatic bed Emergent Scrub-shrub (areas where shrubs have > 30% cover) Forested (areas where trees have > 30% cover) If the unit has a Forested class, check if: The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 	2
□ Permanently flooded or inundated 4 or more types present: points = 3 □ Occasionally flooded or inundated 3 types present: points = 1 □ Occasionally flooded or inundated 2 types present: points = 1 □ Saturated only 1 types present: points = 1 □ Saturated only 1 types present: points = 1 □ Saturated only 1 types present: points = 1 □ Seasonally flowing stream or river in, or adjacent to, the wetland 2 points □ Lake Fringe wetland 2 points □ Freshwater tidal wetland 2 points H 1.3. Richness of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle 1 If you counted: > 19 species points = 1 5 species points = 0 H 1.4. Interspersion of habitats 0 1 Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. 3 None = 0 points Low = 1 point Moderate = 2 points	H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (<i>see text for descriptions of</i> <i>hydroperiods</i>).	
Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle 1 If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species	 □ Permanently flooded or inundated □ Seasonally flooded or inundated □ Occasionally flooded or inundated □ Saturated only □ Types present: points = 1 □ Saturated only □ Permanently flowing stream or river in, or adjacent to, the wetland □ Seasonally flowing stream in, or adjacent to, the wetland □ Lake Fringe wetland □ 2 points 	2
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple Ioosestrife, Canadian thistle 1 If you counted: > 19 species points = 2 5 - 19 species points = 1 <5 species	□ Freshwater tidal wetland 2 points	
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points Low = 1 point Moderate = 2 points All three diagrams	H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species points = 0	1
in this row are HIGH = 3 points	H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you have four or more plant classes or three classes and open</i> <i>water, the rating is always high.</i> None = 0 points Low = 1 point All three diagrams in this row are HIGH = 3 points HIGH = 3 points	3

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number	
of points.	
✓ Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long)	
✓ Standing snags (dbh > 4 in) within the wetland	
☑ Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends	
at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at	
least 33 ft (10 m)	3
Stable steep banks of fine material that might be used by beaver or muskrat for denning	
(> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees	
that have not yet weathered where wood is exposed)	
☐ At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas	
that are permanently or seasonally inundated (structures for egg-laying by amphibians)	
□ Invasive plants cover less than 25% of the wetland area in every stratum of plants (see	
H 1.1 for list of strata)	
Total for H 1 Add the points in the boxes above	11
Rating of Site Potential If Score is: \Box 15 - 18 = H \Box 7 - 14 = M \Box 0 - 6 = L Record the rating on	the first page
H 2.0. Does the landscape have the potential to support the habitat function of the site?	
H 2.1 Accessible habitat (include only habitat that directly abuts wetland unit).	
Calculate:	
0 % undisturbed habitat + (0 % moderate & low intensity land uses / 2) = 0%	
If total accessible habitat is:	0
$> \frac{1}{3}$ (33.3%) of 1 km Polygon points = 3	
20 - 33% of 1 km Polyaon points = 2	
10 - 19% of 1 km Polygon points = 1	
< 10 % of 1 km Polygon points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.	
Calculate:	
2 % undisturbed habitat + (2 % moderate & low intensity land uses / 2) = 3%	
	0
Undisturbed habitat > 50% of Polygon points = 3	U
Undisturbed habitat 10 - 50% and in 1-3 patches points = 2	
Undisturbed habitat 10 - 50% and > 3 patches points = 1	
Undisturbed habitat < 10% of 1 km Polygon points = 0	
H 2.3 Land use intensity in 1 km Polygon: If	
> 50% of 1 km Polygon is high intensity land use points = (-2)	-2

 Total for H 2
 Add the points in the boxes above
 -2

 Rating of Landscape Potential If Score is: 4 - 6 = H
 1 - 3 = M
 I - 3 = K
 I - 3 = K

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or poli	cies? Choose	
only the highest score that applies to the wetland being rated.		
Site meets ANY of the following criteria:	points $= 2$	
✓ It has 3 or more priority habitats within 100 m (see next page)		
It provides habitat for Threatened or Endangered species (any	/ plant	
or animal on the state or federal lists)		
It is mapped as a location for an individual WDFW priority spe	cies	2
It is a Wetland of High Conservation Value as determined by t	he	2
Department of Natural Resources		
It has been categorized as an important habitat site in a local	or	
regional comprehensive plan, in a Shoreline Master Plan, or ir	na	
watershed plan		
Site has 1 or 2 priority habitats (listed on next page) with in 100m	points $= 1$	
Site does not meet any of the criteria above	points $= 0$	
Rating of Value If Score is: $\Box 2 = H \Box 1 = M \Box 0 = L$	ecord the rating on	the first page

≤ 50% of 1km Polygon is high intensity

points = 0
WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp.

http://wdfw.wa.gov/publications/00165/wdfw00165.pdf_or access the list from here: http://wdfw.wa.gov/conservation/phs/list/

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE**: This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- ✓ Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- □ **Oregon White Oak**: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- □ Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- ☑ **Instream**: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- □ **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report see web link on previous page*).
- **Caves**: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- □ **Cliffs**: Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- □ **Talus**: Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland	Туре	Category
Chook of	i any aritaria that apply to the watland List the astasany when the appropriate aritaria are mat	
	any chiena that apply to the wetland. List the category when the appropriate chiena are met.	
50 1.0.1	Estuarine wetlands	
	Does the wetland meet the following chiena for Estuarine wetlands?	
	I ne dominant water regime is tidal,	
	vegetated, and	
	With a salinity greater than 0.5 ppt	
	$\Box \text{ Yes - Go to SC 1.1} \qquad \Box \text{ No} = \text{Not an estuarine wetland}$	
SC 1.1.	Is the wetland within a National Wildlife Refuge, National Park, National Estuary	
	Reserve, Natural Area Preserve, State Park or Educational, Environmental, or Scientific	
	Reserve designated under WAC 332-30-151?	
	\Box Yes = Category I \Box No - Go to SC 1.2	
SC 1.2.	Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
	The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing,	
	and has less than 10% cover of non-native plant species. (If non-native species are	
	Spartina, see page 25)	
	At least ³ / ₄ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-	
	arazed or un-mowed arassland	
	The wetland has at least two of the following features: tidal channels, depressions with	
	open water, or contiguous freshwater wetlands	
	\Box Vec. Cotogony I \Box No. Cotogony I	
00.00	$\Box \text{ fes} = \text{Category I} \Box \text{ No} = \text{Category I}$	
SC 2.0.	Wetlands of High Conservation value (WHCV)	
50 2.1.	Has the WA Department of Natural Resources updated their website to include the list	
SC 2.2.	Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?	
	$\Box \text{ Yes} = \textbf{Category I} \qquad \Box \text{ No} = \textbf{Not WHCV}$	
SC 2.3.	Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?	
	http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf	
	Yes - Contact WNHP/WDNR and to SC 2.4 No = Not WHCV	
SC 2.4.	Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation	
	Value and listed it on their website?	
	□ Yes = Category I □ No = Not WHCV	
SC 3.0.	Bogs	
	Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation	
	in boos? Use the key below. If you answer YES you will still need to rate the	
	wetland based on its functions	
SC 3 1	Does an area within the wetland unit have organic soil horizons, either peats or mucks	
00 0.1.	that compose 16 in or more of the first 32 in of the soil profile?	
	$\Box V_{\Theta S} = G_{\Theta} \text{ to } SC 33 \qquad \forall N_{\Theta S} = G_{\Theta} \text{ to } SC 33$	
60 2 2	Does an area within the wetland unit have organic soils either peats or mucks, that are	
30 J.Z.	loss than 16 in doop over bedrock, or an impormable bardpap such as clay or velcanic	
	ress that to indeep over bedrock, or an imperineable hardpair such as day or volcanic	
	$\Box \text{ Yes - Go to SC 3.3} \qquad \Box \text{ No} = \text{Is not a bog}$	
SC 3.3.	Does an area with peats or mucks have more than 70% cover of mosses at ground	
	level, AND at least a 30% cover of plant species listed in Table 4?	
	$\Box \text{ Yes} = \text{Is a Category I bog} \qquad \Box \text{ No - Go to SC 3.4}$	
	NOTE: If you are uncertain about the extent of mosses in the understory, you may	
	substitute that criterion by measuring the pH of the water that seeps into a hole dug at	
	least 16 in deep. If the pH is less than 5.0 and the plant species in Table 4 are present,	
	the wetland is a bog.	
SC 3.4.	Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir,	
	western red cedar, western hemlock, lodgepole pine, quaking aspen, Engelmann	
	spruce, or western white pine, AND any of the species (or combination of species) listed	
	in Table 4 provide more than 30% of the cover under the canopy?	
	☐ Yes = Is a Category I bog ☐ No = Is not a bog	

SC 4.0.	orested Wetlands	
	Does the wetland have at least 1 contiguous acre of forest that meets one of these	
	criteria for the WA Department of Fish and Wildlife's forests as priority habitats? If you	
	answer YES you will still need to rate the wetland based on its functions.	
	Old-growth forests (west of Cascade crest): Stands of at least two tree species.	
	forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac	
	(20 trees/ha) that are at least 200 years of age OR have a diameter at breast height	
	(dbh) of 32 in (81 cm) or more	
	Mature forests (west of the Cascade Crest): Stands where the largest trees are 80-	
	200 years old OR the species that make up the canopy have an average diameter (dbh)	
	exceeding 21 in (53 cm).	
	Yes = Category I Ves = Category I No = Not a forested wetland for this section	
SC 5.0. \	Netlands in Coastal Lagoons	
	Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
	The wetland lies in a depression adjacent to marine waters that is wholly or partially	
	separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently,	
_	rocks	
	The lagoon in which the wetland is located contains ponded water that is saline or	
	brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to	
	be measured near the bottom)	
	\Box Yes - Go to SC 5.1 \Box No = Not a wetland in a coastal lagoon	
SC 5.1. L	Does the wetland meet all of the following three conditions?	
	I ne wetland is relatively undisturbed (nas no diking, ditching, filling, cultivation, grazing),	
	and has less than 20% cover of aggressive, opportunistic plant species (see list of	
	Species on p. 100). At least 3/ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or up	
	At least /4 of the faildward edge of the wetland has a 100 ft buller of shrub, forest, of un-	
	grazed of difficience grassiand. The worth and in large $then \frac{1}{2}$, and $(4050, tt^2)$	
	The wetland is larger than 7_{10} ac (4350 ft)	
<u> </u>	Yes = Category I No = Category I	
SC 6.0. I	nterdunal wetlands	
	Ownership or WPLION? If you answer you will still need to rate the westend	
	Ownership of WBOO)? If you answer yes you will still need to rate the wetland	
	based on its habital functions.	
	In practical terms that means the following geographic dieds. Long Reach Peningula: Lands west of SR 103	
	Gravland-Westport: Lands west of SR 105	
	Ocean Shores-Conalis: Lands west of SR 115 and SR 100	
	\square Yes - Go to SC 6 1 \square No = Not an interdunal wetland for rating	
SC 6.1	Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form	
	(rates H.H.H or H.H.M for the three aspects of function)?	
	$\Box \text{ Yes} = \text{Category I} \qquad \Box \text{ No} - \text{Go to } \text{SC 6.2}$	
SC 6.2.	Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?	
	\Box Yes = Category II \Box No - Go to SC 6.3	
SC 6.3.	Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and	
	1 ac?	
	□ Yes = Category III □ No = Category IV	
Categor	y of wetland based on Special Characteristics	
If you an	swered No for all types, enter "Not Applicable" on Summary Form	

- Stream (City of Shoreline)
- Stream (King County)
- Park
- City limit

K:\Projects\Y2016\16-06217-000\Project\Critical_Area_Report\Appendix\303d.mxd (7/13/2016)

Water Quality Improvement Projects (TMDLs)

Water Quality Improvement > Water Quality Improvement Projects by WRIA > WRIA 8: Cedar-Sammamish

WRIA 8: Cedar-Sammamish

Counties

King
Snohomish

The following table lists overview information for water quality improvement projects (including total maximum daily loads, or TMDLs) for this water resource inventory area (<u>WRIA</u>). Please use links (where available) for more information on a project.

Waterbody Name	Pollutants	Status**	TMDL Lead
<u>Ballinger Lake</u>	Total Phosphorus	Approved by EPA	Tricia Shoblom 425-649-7288
Bear-Evans Creek Basin	Fecal Coliform	Approved by EPA	<u>Joan Nolan</u>
	Dissolved Oxygen Temperature	Approved by EPA	425-649-4425
Cottage Lake	Total Phosphorus	Approved by EPA Has an implementation plan	Tricia Shoblom 425-649-7288
Issaquah Creek Basin	Fecal Coliform	Approved by EPA	<u>Joan Nolan</u> 425-649-4425
Little Bear Creek Tributaries: Trout Stream Great Dane Creek Cutthroat Creek	Fecal Coliform	Approved by EPA	<u>Ralph Svricek</u> 425-649-7036
North Creek	Fecal Coliform	Approved by EPA Has an implementation plan	<u>Ralph Svricek</u> 425-649-7036
Pipers Creek	Fecal Coliform	Approved by EPA	<u>Joan Nolan</u> 425-649-4425
Sammamish River	Dissolved Oxygen Temperature	Field work starts summer 2015	<u>Ralph Svricek</u> 425-649-7036
Swamp Creek	Fecal Coliform	Approved by EPA Has an implementation plan	Ralph Svrjcek 425-649-7036

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

For more information about WRIA 8:

- · Waterbodies in WRIA 8 using the Water Quality Assessment Query Tool
- Watershed Information for WRIA 8

* The Department of Ecology and other state resource agencies frequently use a system of 62 "Water Resource Inventory Areas" or "WRIAs" to refer to the state's major watershed basins.

APPENDIX C

City of Shoreline Maintenance Facility, Wetland and Stream Delineation Report (The Watershed Company 2016)

September 3, 2013, revised April 18, 2016

Noel Hupprich Capital Project Manager II City of Shoreline, Public Works Department 17500 Midvale Avenue N Shoreline, WA 98133-4905

Re: City of Shoreline Maintenance Facility, Wetland and Stream Delineation Report

The Watershed Company Reference Number: 160329 and 100503

Dear Mr. Hupprich:

On April 13, 2016, I visited Brugger's Bog Park in Shoreline to update the wetland classification using the Department of Ecology *Wetland Rating System for Western Washington, 2014 Update* (Ecology Rating System) as currently required by the City of Shoreline. Prior to recent updates to the Shoreline Critical Areas Regulations, a wetland classification system specific to the City of Shoreline was used for all delineation studies in the City. Similarly, Shoreline has revised its stream classification system to be substantially similar to the Department of Natural Resources Stream Typing System.

The wetland and stream were originally delineated by The Watershed Company on August 22, 2013. The delineation and classification studies have been conducted, in part, to determine the extent of any buffer areas that may encumber the maintenance facility south of the park. Since no wetland or stream features are found within the maintenance facility property, this study focused on the areas south of the stream bridge to the park's southern property line.

This letter summarizes the findings of this study and details applicable federal, state, and local regulations. The following attachments are included:

- Wetland and Stream Delineation Map
- Wetland Determination Data Forms
- Wetland Rating Form

Methods

Public-domain information on the subject properties was reviewed for this delineation study. These sources include USDA Natural Resources Conservation Service Soil maps,

U.S. Fish and Wildlife Service National Wetland Inventory maps, Washington Department of Fish and Wildlife interactive mapping programs (PHS on the Web and SalmonScape), King County's GIS mapping website (iMAP), *City of Shoreline Stream and Wetland Inventory and Assessment* (Tetra Tech/KCM, Inc. 2004), and *The City of Lake Forest Park Surface Water Comprehensive Plan Update* (Otak, Inc. 2009).

Prior to our visit, we conducted a review of the *Brugger's Bog Park, Wetland and Stream Delineation Report* (The Watershed Company, 2011) (2011 Watershed Report), which was prepared as part of a culvert replacement/bridge construction project over Ballinger Creek. The 2011 study focused on areas in the immediate vicinity of the proposed bridge crossing.

The study area was evaluated for wetlands using methodology from the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region Version 2.0* (Regional Supplement) (US Army Corps of Engineers [Corps] May 2010). The wetland boundary was determined on the basis of an examination of vegetation, soils, and hydrology. Areas meeting the criteria set forth in the Regional Supplement were determined to be wetland. Soil, vegetation, and hydrologic parameters were sampled at several locations along the wetland boundary to make the determination. Data points on-site are marked with yellow- and black-striped flags. We recorded data at three of these locations.

Delineated wetlands were classified according to the criteria defined in the Shoreline Municipal Code (SMC).

The ordinary high water mark (OHWM) of Ballinger Creek was determined based on the definition provided by the Washington Department of Fish and Wildlife and WAC 220-110-020(69). The OHWM is located by examining the bed and bank physical characteristics and vegetation to ascertain the water elevation for mean annual floods. Areas meeting the definition were determined to be the OHWM and flagged. Field observations were used to classify streams according to the criteria defined in the SMC.

Findings

The study area is located in Brugger's Bog Park, a City of Shoreline municipal park. The park has large lawn areas, a play structure and patchy forested areas that are dominated by a mix of Douglas-fir, western hemlock, western red-cedars, Pacific madrone, and bitter cherry. Salal, Himalayan blackberry, and bracken fern are dominant in the understory. The study area covered those wetlands and streams that could potentially encumber the maintenance facility to the south. There is one wetland, Wetland A (see below), and one stream, Ballinger Creek (see below), located in the study area. There are no wetlands or streams located on the maintenance facility property.

Wetland A

Wetland A is a riverine wetland complex associated with Ballinger Creek. The wetland complex contains three sub-units on alternating sides of Ballinger Creek. Since the sub-units are in very close proximity and mutually influence one another, they are considered one wetland for the purposes of classification/rating. Wetland A contains a forested Cowardin vegetation community. Common vegetation includes black cottonwood, Pacific and Sitka willow, red alder, red-osier dogwood, salmonberry, skunk cabbage, small-fruited bulrush, mannagrass, and creeping buttercup. The soil in Wetland A is a black (10YR 2/1) sandy loam with organic accumulations masking redoximorphic features. Hydrology is provided by a high groundwater table and overbank flooding from Ballinger Creek. Soil saturation was present at the soil surface at our data point location. Other areas in Wetland A contained very shallow surface water during our inspection.

Ballinger Creek

The delineated portion of Ballinger Creek begins at the small, on-site bridge and flows southeast before exiting the property via a culvert at the southeast corner of the park property. The permanently-flowing creek continues southeast for approximately one mile before its confluence with Lyon Creek within the City of Lake Forest Park. Segments of the creek are alternately piped and ditched, and portions flow through braided channels, ponds, and wetlands within Lake Forest Park (*City of Lake Forest Park Surface Water Comprehensive Plan Update*). Several partial fish barriers and two total fish passage barriers are documented downstream of the project area (WDFW *SalmonScape*, 2016). However, downstream portions of Ballinger Creek are documented to contain Coho salmon habitat (WDFW *SalmonScape*, 2016), and resident cutthroat trout cannot be definitively ruled out of the reach within Brugger's Bog Park.

Ditch

An excavated ditch is located adjacent to the southern property line, south of Wetland A and Ballinger Creek. The ditch connects with Ballinger Creek approximately 50 feet upstream from the southeast property corner. The ditch is clearly constructed, as evidenced by its steeply excavated banks and geometrically-straight configuration. No active hydrology was present during our inspection, but water-stained leaves were observed at the bottom of the ditch, suggesting that occasional flooding occurs in the ditch. Despite containing evidence of hydrology and a hydrophytic plant community, the ditch did not satisfy the hydric soil criteria, as no organic matter or redoximorphic features were observed in the soil profile. Furthermore, regulated wetlands in the City of Shoreline do not include "artificial wetlands created entirely from non-wetland sites, including, but not limited to, irrigation and drainage ditches" (SMC 20.80.310.A). It also contains no historic stream flow based physical characteristics, lack of natural upstream channels, overall landscape position and the proximity to Ballinger Creek Therefore, the on-site ditch is not a jurisdictional wetland or stream and does not have an associated buffer.

Local Regulations

Wetlands and streams in Shoreline are regulated under SMC 20.80. Under the code, wetlands are rated as one of four categories based on the Ecology Rating System. According to the Rating System, Wetland A scored seven points for water quality functions, seven points for hydrologic functions, and six points for habitat functions, for a total score of 20 points. This score qualifies Wetland A as a Category II wetland. Wetland buffers in Shoreline are determined based on a combination of the wetland category and the habitat score. Category II wetlands with a habitat score of six points are required to have a standard buffer width of 165 feet (SMC 20.80.330.A.3).

Streams in Shoreline are classified as one of four categories based on inventory status as Shorelines of the State, fish use, and permanence of flow. Ballinger Creek is not considered a Shoreline of the State; therefore, it is not a Type S stream. Streams that are not Type S and have fish use or fish habitat are considered Type F streams. Since Ballinger Creek contains documented Coho salmon habitat downstream of the study area, cutthroat trout cannot be definitively ruled out of the study area; and downstream constructed fish migration barriers could theoretically be removed, the creek satisfies the criteria for a Type F stream with anadromous fish use. Type F streams with anadromous fish use are required to have a standard buffer width of 115 feet (SMC 20.80.280.C.1).

State and Federal Regulations

Wetlands, streams, and some ditches are also regulated by the U.S. Army Corps of Engineers (Corps) under section 404 of the Clean Water Act. Any filling of Waters of the State, including wetlands (except isolated wetlands), would require notification and permits from the Corps. However, in general, neither the Corps nor Ecology regulates wetland buffers, unless direct impacts are proposed. We understand the proposed project will not result in direct impacts to the wetland, stream, or ditch. Therefore, no state or federal wetland- or stream-related permitting would be triggered by the proposed improvements.

Disclaimer

The information contained in this letter or report is based on the application of technical guidelines currently accepted as the best available science and in conjunction with the manuals and criteria outlined in the methods section. All discussions, conclusions and recommendations reflect the best professional judgment of the author(s) and are based upon information available to us at the time the study was conducted. All work was completed within the constraints of budget, scope, and timing. The findings of this report are subject to verification and agreement by the appropriate local, State and Federal regulatory authorities. No other warranty, expressed or implied, is made.

Brugger's Bog Park Wetland and Stream Delineation Report Hupprich, N. September 3, 2013, revised April 18, 2016 Page 5

Please call if you have any questions or if we can provide you with any additional information.

Sincerely,

RKI

Ryan Kahlo, PWS Ecologist

Enclosures

THIS PAGE INTENTIONALLY LEFT BLANK

WETLAND DETERMINATION DATA FORM

Western Mountains, Valleys, and Coast Supplement to the 1987 COE Wetlands Delineation Manual 750 Sixth Street South Kirkland, Washington 98033 (425) 822-5242 watershedco.com

DP-1

Project Site: Applicant/Owner: Investigator:	Brug City o Kahlo	ger's Bog Park of Shoreline o. R: Lund, N				Sampling Sampling Citv/Cour	Date: Point: itv:	8/22/2 DP- 1 Shore	013 I line / K	(ina Co.
Sect., Township, Range	S 4	T 26N	R 4E			State:		WA		
Landform (hillslope, terrace	, etc)	Riverbank		Slope (%)	2	Local relief	(concave,	convex,	none)	Concave
Subregion (LRR)			Lat		-	Long			Datum	
Soil Map Unit Name No	o soil da	ta available for th	nis locati	ion			NWI clas	sification	No	ne
Are climatic/hydrologic cond Are "Normal Circumstances Are Vegetation	ditions on s" present , or Hydro	the site typical for thi on the site? blogy	is time of y disturbed?	rear? X	Yes D No Yes No	(If no, expl	ain in rema	rks.)	I	
Are Vegetation □, Soil, □,	, or Hydro	logy naturally pro	blematic?			(If needed,	explain an	y answei	rs in Rer	narks.)
SUMMARY OF FINDIN	GS – At	tach site map sho	owing sa	mpling poin	t locations, trans	sects, impo	ortant fea	tures, e	etc.	
Hydrophytic Vegetation P Hydric Soils Present? Wetland Hydrology Prese	resent? ent?		Yes [Yes [Yes [Nost No No	this Sampling Poin	t within a W	etland?	\square	Yes	No

Remarks:

VEGETATION – Use scientific names of plants.

Tree St	ratum (Plot size 5m diam.)	Absolute % Cover	Dominant Species?	Indicator Status	Domina	ince Te	st Worksheet			
1.	Alnus rubra	50	Yes	FAC	Number	of Domin	ant Species	3		
2.	Salix babylonica*	50	No*	FACW	that are 0	OBL, FAC	CW, or FAC:	J		(A)
3.					Total Nur	mber of D	ominant	2		
4.					Species /	Across Al	I Strata:	3		(B)
			= Total Cover		Percent of that are 0	of Domina OBL, FAC	ant Species CW, or FAC:	100		(A/B)
Sapling	/Shrub Stratum (Plot size 3m diam.)									
1. (Cornus sericea	25	Yes	FACW	Prevale	nce Ind	ex Worksheet	Ł		
2.						Total %	Cover of	<u>.</u>	lultiply b	γ
3.					OBL spe	cies		x 1 =		
4.					FACW sp	pecies		x 2 =		
5.		-			FAC spe	cies		x 3 =		
			= Total Cover		FACU sp	ecies		x 4 =		
l			-		UPL spec	cies		x 5 =		
Herb St	ratum (Plot size 1m diam.)				Column t	otals		(A)		(B)
1.	Equisetum telmateia	40	Yes	FACW					-	
2.	Phalaris arundinacea	10	No	FACW	Preva	alence Ir	ndex = B / A =			
3.	Ranunculus repens	20	Yes	FACW						
4. (Denanthe sarmentosa	2	No	OBL	Hydrop	hytic Ve	egetation Indi	cators		,
5.					X	Domina	ance test is > 50%	%		
6.						Prevale	ence test is ≤ 3.0	*		
7.						Morpho	ological Adaptatic	ons * (provide	suppor	ling
8.						data in	remarks or on a	separate she	et)	
9.						Wetlan	d Non-Vascular I	Plants *		
10.						Probler	natic Hydrophytic	c Vegetation	* (explai	n)
11.									<u> </u>	
			= Total Cover		* Indicato present,	ors of hyd unless di	ric soil and wetla sturbed or proble	ind hydrology	must b	Э
Woody	Vine Stratum (Plot size)									
1.	Convulvulus arvensis	70	No**	NI						
2.	Rubus armeniacus	5	No	FACU	Hydroph	ytic Veg	etation Yes		No	
% Bare	Ground in Herb Stratum		= Total Cover		Present	?		, KA	NO.	
Domort										
Remark	**NI species not included in dominan	ce calculations	š.							

Profile Descr	iption: (Describe to the	depth neede	d to document the indicate	or or confir	m the absence of	f indicato	rs.)	
Depth	Matrix		Re	edox Featu	res		- ,	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-16	10YR 2/1	100			71		Sandy loam	
¹ Type: C=Con Hydric Soil In Histic Ep Black His Hydrogel Depleted Thick Da Sandy M Sandy G Restrictive Lar Type: Depth (inches Remarks:	centration, D=Depletion, dicators: (Applicable to (A1) ipedon (A2) stic (A3) n Sulfide (A4) Below Dark Surface (A1 rk Surface (A12) ucky Mineral (S1) leyed Matrix (S4) yer (if present):): Organic masking redox	All LRRs, ur	d Matrix, CS=Covered or Coa Mess otherwise noted.) Sandy Redox (S5) Stripped Matrix (S6) .oamy Mucky Mineral (F1) (c .oamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	ated Sand (Grains ² Loc: PL Indicato 2 C Re 0 T 3 Indicato be prese Hydric soil	=Pore Lini m Muck (A d Parent N her (explain prs of hydro ent, unless present?	ng, M=Matrix blematic Hydric S 10) faterial (TF2) n in remarks) ophytic vegetation disturbed or proble	oils ³ and wetland hydrology must matic
HYDROLOG	SY							
Wetland Hydi Primary Indic Surfac High N Satura Satura Other Satura Drift D Algal Iron D Surfac Inunda Image	rology Indicators: sators (minimum of one re- se water (A1) Vater Table (A2) ation (A3) Marks (B1) nent Deposits (B2) veposits (B3) Mat or Crust (B4) eposits (B5) se Soil Cracks (B6) ation Visible on Aerial rry (B7)	aquired: check	k all that apply): barsely Vegetated Concave S ater-Stained Leaves (excep alt Crust (B11) yuatic Invertebrates (B13) ydrogen Sulfide Odor (C1) xidized Rhizospheres along J esence of Reduced Iron (C4 ecent Iron Reduction in Tilleo unted or Stressed Plants (D her (explain in remarks)	Surface (B8 t MLRA 1, 2 Living Root:) d Soils (C6) 1) (LRR A)	s) 2, 4A & 4B) (B9) s (C3)		ary Indicators (2 or later-Stained Leave rainage Patterns (F ry-Season Water T aturation Visible or eomorphic Position hallow Aquitard (D AC-Neutral Test (D aised Ant Mounds rost-Heave Hummo	more required): es (B9) (MLRA 1, 2, 4A & 4B) 310) able (C2) A crial Imagery (C9) a (D2) 3) 55) (D6) (LRR A) bocks
Field Observa Surface Water Water Table F Saturation Pre (includes capi	ations		lo Depth (in): lo Depth (in): 14 lo Depth (in): Surf a	ace	Wetland Hydro	logy Pres	ent? Yes	No
Describe Reco	orded Data (stream gauge	e, monitoring	well, aerial photos, previous	inspections	s), if available:			
Remarks:								

WETLAND DETERMINATION DATA FORM

Western Mountains, Valleys, and Coast Supplement to the 1987 COE Wetlands Delineation Manual 750 Sixth Street South Kirkland, Washington 98033 (425) 822-5242 watershedco.com

DP-2

Project Site:	Brug	ger's Bog Parl	k			Sampling	Date:	8/22/20	13		
Applicant/Owner:	City	of Shoreline				Sampling	Point:	DP- 2			
Investigator:	Kahl	o. R: Lund. N				City/County: Shoreline / King Co.					
Sect., Township, Rand	ie S4	T 26N	R 4E			State [.]		WA			
Landform (hillslope, terrace, etc) Terrace Slope (%) 5							(concave,	convex, no	one)	None	
Subregion (LRR) A Lat									Datum		
Soil Map Unit Name	No soil d	ata available fo	or this locatio	n			NWI cla	ssification	Nor	ne	
Are climatic/hydrologic Are "Normal Circumst	conditions of ances" preser	n the site typical fo it on the site?	or this time of yea	ar? 🛛 Yes 🛛 Yes	□ No □ No	(If no, expl	ain in rema	arks.)			
Are Vegetation \square , So	il, □, or Hydr il, □, or Hydr	ology 🗋 signification ology	problematic?			(If needed,	explain ar	ny answers	in Rem	arks.)	
SUMMARY OF FIN Hydrophytic Vegetal Hydric Soils Present Wetland Hydrology I Remarks:	DINGS – A ion Present? ? Present?	ttach site map	showing sam	pling point lo	cations, trans Sampling Poin	sects, impo	ortant fea	itures, etc	Yes	No	
VEGETATION – U	VEGETATION – Use scientific names of plants.										
Tree Stratum (Plot si	ze 5m diar	n.)	Absolute % Cover	Dominant Species?	Indicator Status	Domina	nce Test	Workshe	et		
1. Salix baylon	ica		90	Yes	FACW	Number of that are O	f Dominan BL, FACW	t Species /, or FAC:		3	(Δ)
3						Tatal Nive					(,,)

Remarks: Presumed FAC							
% Bare Ground in Herb Stratum	_						
		= Total Cover		Present?	163		
2.				Hydrophytic Vege	tation Yes	\square	No
1.	/						
Woody Vine Stratum (Plot size)			present, unless dis	lurbed or problem	auc	
		= Total Cover		* Indicators of hydr	ic soil and wetlan	d hydrology	must be
11.				11001011		. egotation	(explain)
10.				Problem	atic Hydrophytic	Vegetation 3	* (explain)
9.				uata in r	Non-Vascular D	eparate sne	el)
9					ogical Adaptation	is " (provide	e supporting
6.				Prevaler	nce test is ≤ 3.0 *	* * (*********	
5.				X Dominar	nce test is > 50%		
4.				Hydrophytic Ve	getation Indication	ators	
^{3.} Field grass	40	Yes	FAC*				
2. Polystichum munitum	10	No	FACU	Prevalence In	dex = B / A =		
1. Equisetum telmateia	10	No	FACW			· /	(=)
Herb Stratum (Plot size 1m diam.)				Column totals		(A)	(B)
				UPL species		x 5 =	
		= Total Cover		FACU species		x 4 =	
5.				FAC species		x 3 =	
4				FACW species		x 2 =	
3						<u> v</u> 1 –	
1. Rosa nutkana	10	Yes	FAC	Prevalence Inde	ex Worksheet		Aultiply by
Sapling/Shrub Stratum (Plot size 3m diam.)				-		(A/B)
		= Total Cover		Percent of Dominal that are OBL, FAC	nt Species N, or FAC:	100	(4/P)
4.				Species Across All	Strata:	3	(B)
2.				Total Number of D			(A)

Profile Descri	ption: (Describe to the	depth neede	d to document the indicate	or or confi	rm the absence o	f indicator	rs.)	
Depth	Matrix		R	edox Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	10YR 2/2	100					Sandy loam	
8-12	10YR 4/2	100					Sandy loam	
¹ Type: C=Con Hydric Soil In Histosol (Histic Epi Black His Hydroger Depleted Thick Dai Sandy M Sandy Gl Restrictive Lav Type: Depth (inches) <i>Remarks:</i>	centration, D=Depletion, dicators: (Applicable to (A1) pedon (A2) tic (A3) n Sulfide (A4) Below Dark Surface (A1 Pelow Dark Surface (A1 rk Surface (A12) ucky Mineral (S1) eyed Matrix (S4) ver (if present): :	RM=Reduced	d Matrix, CS=Covered or Co nless otherwise noted.) Sandy Redox (S5) Stripped Matrix (S6) Loamy Mucky Mineral (F1) (Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	ated Sand (Grains ² Loc: PL Indicato RA 1) Crite Cri Crite Crite Crite Crite Crite Crie	=Pore Lini rs for Prol m Muck (A d Parent M her (explain ors of hydro ent, unless	ng, M=Matrix blematic Hydric S 10) laterial (TF2) n in remarks) ophytic vegetation disturbed or proble	and wetland hydrology must ematic
HYDROLOG Wetland Hydr Primary Indic	SY ology Indicators: ators (minimum of one re se water (A1)	equired: checl	k all that apply): parsely Vegetated Concave a	Surface (B8	3)	Second	ary Indicators (2 or	r more required): es (B9) (MLRA 1, 2, 4A & 4B)
High V Satura Vater Dorift D Algal I Uron D Surfac Inunda	Vater Table (A2) tition (A3) Marks (B1) ent Deposits (B2) eposits (B3) Mat or Crust (B4) eposits (B5) e Soil Cracks (B6) tition Visible on Aerial ry (B7)		ater-Stained Leaves (excep alt Crust (B11) quatic Invertebrates (B13) ydrogen Sulfide Odor (C1) xidized Rhizospheres along resence of Reduced Iron (C4 ecent Iron Reduction in Tilled unted or Stressed Plants (D ther (explain in remarks)	t MLRA 1, Living Root H d Soils (C6) 1) (LRR A)	2, 4A & 4B) (B9) s (C3)		rainage Patterns (E ry-Season Water T aturation Visible or eomorphic Position hallow Aquitard (D AC-Neutral Test (C aised Ant Mounds rost-Heave Hummo	310) Table (C2) n Aerial Imagery (C9) n (D2) 3) 55) (D6) (LRR A) pocks
Field Observa Surface Water Water Table P Saturation Pre (includes capil	Ations Present? resent? sent? lary fringe)	es 🛛 M es 🖾 M es 🖾 M	No Depth (in): No Depth (in): No Depth (in):		Wetland Hydro	logy Pres	ent? Yes [No 🔀
Describe Reco	orded Data (stream gauge	e, monitoring	well, aerial photos, previous	inspections	s), if available:			
Remarks:								

WETLAND DETERMINATION DATA FORM

Western Mountains, Valleys, and Coast Supplement to the 1987 COE Wetlands Delineation Manual

DP-3

Project Site:	Brug	ger's Bog Park				Sampling	Date:	8/22/20	13	
Applicant/Owner:	Applicant/Owner: City of Shoreline					Sampling	Sampling Point:			
Investigator:	Kahle	o, R; Lund, N				City/Cour	nty:	Shoreli	ine / Ki	ing Co.
Sect., Township, Range	S 4	T 26N	R 4E			State:		WA		
Landform (hillslope, terrace,	etc)	Ditch		Slope (%)	2	Local relief	f (concave,	convex, n	one)	Concave
Subregion (LRR) A			Lat			Long			Datum	
Soil Map Unit Name No	soil da	ata available for t	his locati	on			ne			
Are climatic/hydrologic conditions on the site typical for this time of year? Xesting Yesting No (If no, explain in remarks.) Are "Normal Circumstances" present on the site? Xesting Yesting No (If needed, explain any answers in Remarks.) Are Vegetation [], Soil, [], or Hydrology [] asturally problematic? (If needed, explain any answers in Remarks.)								narks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.										
Hydrophytic Vegetation P Hydric Soils Present? Wetland Hydrology Prese	resent? nt?		Yes D Yes D Yes D] No Ist ☑ No] No	his Sampling Poi	int within a W	etland?		Yes	No

Remarks:

VEGETATION – Use scientific names of pl	ants.							
Tree Stratum (Plot size 5m diam.)	Absolute % Cover	Dominant Species?	Indicator Status	Domina	ance Tes	st Worksheet		
1. Salix lucida	90	Yes	FACW	Number that are 0	of Domina OBL, FAC	ant Species W, or FAC:	4	(4)
3. 4.				Total Nui Species	mber of D Across Al	ominant I Strata:	5	(A) (B)
		= Total Cover		Percent of that are 0	of Domina OBL, FAC	ant Species W, or FAC:	80	(B) (A/B)
Sapling/Shrub Stratum (Plot size 3m diam.)								、 /
1. Rubus spectabilis 2. 2.	50	Yes	FAC	Prevale	nce Ind Total %	ex Worksheet Cover of	Mult	iply by
3.				OBL spe	cies		x 1 =	
4.				FACW sp	Decles		x 2 =	
5.		- Total Cover		FAC spe	cies		x 3 =	
					cies		x 4 -	
Herb Stratum (Plot size 1m diam.)				Column t	otals		(A)	(B)
1. Equisetum telmateia	10	Yes	FACW				()	(2)
2. Ranunculus repens	10	Yes	FACW	Preva	alence Ir	ndex = B / A =		
з. Д				Hydron	butio Va	actation Indian	toro	
5.				Туштор	Domina	sgetation indication indicatination indication indication indication indication indica	liors	
6.				~	Prevale	ence test is ≤ 3.0 *		
7.					Morpho	logical Adaptations	s * (provide su	pporting
8.					data in	remarks or on a se	parate sheet)	
9.					Wetland	d Non-Vascular Pla	ants *	
10.					Problen	natic Hydrophytic V	/egetation * (e	xplain)
11.		= Total Cover		* Indicato present,	ors of hyd unless dis	ric soil and wetland	l hydrology mi atic	ust be
Woody Vine Stratum (Plot size)								
Rubus armeniacus	15	Yes	FACU					
2.		= Total Cover		Hydroph Present?	iytic Vege ?	etation Yes		No 🔀
% Bare Ground in Herb Stratum								
Remarks:								

Profile Descr	intion: (Describe to the	depth neede	d to document the indicat	or or confi	rm the absence o	findicato	rs.)	
Depth	Matrix	opin noode	R	edox Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	7.5YR 2.5/2	100					Loam	
8-12	2.5Y 3/1	100					Loamy sand	
¹ Type: C=Con	centration, D=Depletion	, RM=Reduced	Matrix, CS=Covered or Co	ated Sand	Grains ² Loc: PL	.=Pore Lini	ing, M=Matrix	1
Hydric Soil In Histosol Histic Ep Black His Hydrogen Depleted Thick Da Sandy M Sandy G	dicators: (Applicable t (A1) ipedon (A2) stic (A3) n Sulfide (A4) I Below Dark Surface (A rk Surface (A12) ucky Mineral (S1) leyed Matrix (S4)	o all LRRs, ur 	nless otherwise noted.) Sandy Redox (S5) Stripped Matrix (S6) .oamy Mucky Mineral (F1) (.oamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	except MLI	Indicato 2 c Re C 3 Indicato be prese	rs for Proi m Muck (A d Parent M her (explain ors of hydro nt, unless	blematic Hydric S 10) Material (TF2) n in remarks) ophytic vegetation disturbed or proble	Soils³ and wetland hydrology must ematic
Restrictive Law Type: Depth (inches	yer (if present):				Hydric soil	present?	Yes	No 🕅
Remarks:								
HYDROLOG	GY							
Wetland Hydi Primary India Surfac High V Satura Water Sedim Drift D Algal I Surfac Inunda Image	rology Indicators: cators (minimum of one i ce water (A1) Water Table (A2) ation (A3) Marks (B1) nent Deposits (B2) Deposits (B3) Mat or Crust (B4) deposits (B5) ce Soil Cracks (B6) ation Visible on Aerial ery (B7)	required: check	k all that apply): parsely Vegetated Concave ater-Stained Leaves (excep alt Crust (B11) uatic Invertebrates (B13) ydrogen Sulfide Odor (C1) kidized Rhizospheres along esence of Reduced Iron (C2 ecent Iron Reduction in Tille unted or Stressed Plants (D ther (explain in remarks)	Surface (B8 tr MLRA 1, Living Root 4) d Soils (C6) 1) (LRR A)	3) 2, 4A & 4B) (B9) s (C3)	Second D D S S S S S S S S S S S S S S S S S	lary Indicators (2 or /ater-Stained Leav rainage Patterns (f ry-Season Water T aturation Visible or eomorphic Position hallow Aquitard (D AC-Neutral Test (D aised Ant Mounds rost-Heave Hummo	r more required): res (B9) (MLRA 1, 2, 4A & 4B) B10) fable (C2) n Aerial Imagery (C9) n (D2) 3) 55) (D6) (LRR A) ocks
Field Observa Surface Water Water Table P Saturation Pre (includes capil	ations Yesent? Yesent?	Yes X N Yes X N	lo Depth (in): lo Depth (in): lo Depth (in):		Wetland Hydro	logy Pres	ent? Yes	No 📃
Describe Reco	orded Data (stream gaug	ge, monitoring	well, aerial photos, previous	inspection	s), if available:			
Remarks:								

RATING SUMMARY – Western Washington

Name of wetland (or ID Wetland A): Date of site visit: $\frac{4/11/2016}{1000}$ Rated by: <u>Kahlo, R</u> Trained by Ecology? \boxtimes Y \Box N Date of training: 9/2014

HGM Class used for rating: <u>Riverine</u> Wetland has multiple HGM classes? X Y ... N

NOTE: Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map: <u>King County iMAP and Google Earth</u>

OVERALL WETLAND CATEGORY (based on functions \square or special characteristics \square)

1. Category of wetland based on FUNCTIONS

- Category I Total score = 23 27
- Category II Total score = 20 22
- **Category III** Total score = 16 19
- **Category IV** Total score = 9 15

FUNCTION	lı Wa	mprov Iter Q	/ing uality	H	ydrolo	ogic		Habita	ət	
					Circle	the ap	propr	iate ra	tings	
Site Potential	Н	M	L	Н	M	L	Н	M	L	
Landscape Potential	H	М	L	H	М	L	Н	Μ	L	
Value	H	М	L	H	М	L	H	Μ	L	TOTAL
Score Based on Ratings		8			8			6		22

Score for each function based on three ratings (order of ratings is not important) 9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M

6 = H,M,L6 = M,M,M

4 = M,L,L 3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY	
Estuarine	Ι	II
Wetland of High Conservation Value	I	
Bog		Ι
Mature Forest	I	
Old Growth Forest		Ι
Coastal Lagoon	Ι	II
Interdunal	I II	III IV
None of the above		\boxtimes

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	
Map of the contributing basin	D 4.3, D 5.3	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	Н 1.1, Н 1.4	1
Hydroperiods	H 1.2	1
Ponded depressions	R 1.1	1
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	2
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	2
Width of unit vs. width of stream (can be added to another figure)	R 4.1	2
Map of the contributing basin	R 2.2, R 2.3, R 5.2	4
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	2
polygons for accessible habitat and undisturbed habitat		5
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	6

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L 3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and undisturbed habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

 \boxtimes NO – go to 2

- \Box **YES** the wetland class is **Tidal Fringe** go to 1.1
- 1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) *If your wetland can be classified as a Freshwater Tidal Fringe use the forms for Riverine wetlands. If it is Saltwater Tidal Fringe it is an* **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

 \boxtimes NO – go to 3 \square YES – The wetland class is Flats *If your wetland can be classified as a Flats wetland, use the form for Depressional wetlands.*

3. Does the entire wetland unit meet all of the following criteria?
□ The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size;
□ At least 30% of the open water area is deeper than 6.6 ft (2 m).

⊠NO – go to 4 □**YES** – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - \Box The wetland is on a slope (*slope can be very gradual*),

□ The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,

The water leaves the wetland **without being impounded**.

 \boxtimes NO – go to 5

YES – The wetland class is **Slope**

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
 - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river,

⊠The overbank flooding occurs at least once every 2 years.

6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.*

 \Box NO – go to 7

□ **YES** – The wetland class is **Depressional**

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.

 \Box NO – go to 8

□ YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit being rated	HGM class to use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream	Depressional
within boundary of depression	
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other	Treat as
class of freshwater wetland	ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

RIVERINE AND FRESHWATER TIDAL FRINGE WETLA	NDS	
Water Quality Functions - Indicators that the site functions to improv	e water quality	
R 1.0. Does the site have the potential to improve water quality?		
R 1.1. Area of surface depressions within the Riverine wetland that can trap sediments during a floo	ding event:	
Depressions cover > 3/4 area of wetland	points = 8	
Depressions cover > 1/2 area of wetland	points = 4	4
Depressions present but cover < 1/2 area of wetland	points = 2	
No depressions present	points = 0	
R 1.2. Structure of plants in the wetland (areas with >90% cover at person height, not Cowardin cla Trees or shrubs > 2/3 area of the wetland	sses) points = 8	
Trees or shrubs > 1/3 area of the wetland	points = 6	
Herbaceous plants (> 6 in high) > $2/3$ area of the wetland	points = 6	6
Herbaceous plants (> 6 in high) > 1/3 area of the wetland	points = 3	
Trees, shrubs, and ungrazed herbaceous < 1/3 area of the wetland	points = 0	
Total for R 1 Add the points in the boxes above		10
		· · ·

Rating of Site Potential If score is: \Box **12-16 = H** \boxtimes **6-11 = M** \Box **0-5 = L**

Record the rating on the first page

R 2.0. Does the landscape have the potential to support the water quality function of the site?	
R 2.1. Is the wetland within an incorporated city or within its UGA? Yes = 2 No :	= 0 2
R 2.2. Does the contributing basin to the wetland include a UGA or incorporated area? Yes = 1 No :	= 0 1
R 2.3. Does at least 10% of the contributing basin contain tilled fields, pastures, or forests that have been clearcut within the last 5 years? Yes = 1 No :	= 0 0
R 2.4. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No :	= 0 1
R 2.5. Are there other sources of pollutants coming into the wetland that are not listed in questions R 2.1-R 2.4 Other sourcesYes = 1 No :	= 0 0
Total for R 2 Add the points in the boxes abo	ve 4
\square	an an tha first same

Rating of Landscape Potential If score is: $\square 3-6 = H \square 1 \text{ or } 2 = M \square 0 = L$

Record the rating on the first page

R 3.0. Is the water quality improvement provided by the site valuable to society?	
R 3.1. Is the wetland along a stream or river that is on the 303(d) list or on a tributary that drains to one within 1 mi? Yes = 1 No = 0	
R 3.2. Is the wetland along a stream or river that has TMDL limits for nutrients, toxics, or pathogens? Yes = 1 No = 0	1
R 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? (answer YES if there is a TMDL for the drainage in which the unit is found)Yes = 2No = 0	0
Total for R 3Add the points in the boxes above	2

Rating of Value If score is: $\square 2-4 = H \square 1 = M \square 0 = L$

Record the rating on the first page

RIVERINE AND FRESHWATER TIDAL FRINGE WETLANDS	
Hydrologic Functions - Indicators that site functions to reduce flooding and stream erosion	า
R 4.0. Does the site have the potential to reduce flooding and erosion?	
R 4.1. Characteristics of the overbank storage the wetland provides:	
Estimate the average width of the wetland perpendicular to the direction of the flow and the width of the	
stream or river channel (distance between banks). Calculate the ratio: (average width of wetland)/(average	
width of stream between banks).	
If the ratio is more than 20 points = 9	4
If the ratio is 10-20 points = 6	
If the ratio is 5-<10 points = 4	
If the ratio is 1-<5 points = 2	
If the ratio is < 1 points = 1	
R 4.2. Characteristics of plants that slow down water velocities during floods: Treat large woody debris as forest or	
shrub. Choose the points appropriate for the best description (polygons need to have >90% cover at person	
height. These are <u>NOT Cowardin</u> classes).	7
Forest or shrub for > 1/3 area OR emergent plants > 2/3 area points = 7	/
Forest or shrub for > 1/10 area OR emergent plants > 1/3 area points = 4	
Plants do not meet above criteria points = 0	
Total for R 4Add the points in the boxes above	11
Rating of Site Potential If score is: \Box 12-16 = H \boxtimes 6-11 = M \Box 0-5 = LRecord the rating on the second the sec	he first page
R 5.0. Does the landscape have the potential to support the hydrologic functions of the site?	
R 5.1. Is the stream or river adjacent to the wetland downcut? Yes = 0 No = 1	1
R 5.2. Does the up-gradient watershed include a UGA or incorporated area? Yes = 1 No = 0	1
R 5.3. Is the up-gradient stream or river controlled by dams? Yes = 0 No = 1	1
Total for R 5 Add the points in the boxes above	3
Rating of Landscape Potential If score is: $\square 3 = H \square 1$ or $2 = M \square 0 = L$ Record the rating on the second	he first page
R 6.0. Are the hydrologic functions provided by the site valuable to society?	
R 6.1. Distance to the nearest areas downstream that have flooding problems?	
Choose the description that best fits the site.	
The sub-basin immediately down-gradient of the wetland has flooding problems that result in damage to	
human or natural resources (e.g., houses or salmon redds) points = 2	2
Surface flooding problems are in a sub-basin farther down-gradient points = 1	
No flooding problems anywhere downstream points = 0	
R 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan?	
Yes = 2 No = 0	0

Total for R 6

Rating of Value If score is: $\square 2-4 = H \square 1 = M \square 0 = L$

Record the rating on the first page

2

Add the points in the boxes above

These questions apply to wetlands of all HGM classes.	
HABITAT FUNCTIONS - Indicators that site functions to provide important habitat	
H 1.0. Does the site have the potential to provide habitat?	
 H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked. □ Aquatic bed □ Emergent □ Scrub-shrub (areas where shrubs have > 30% cover) □ Structures: points = 1 □ Forested (areas where trees have > 30% cover) □ If the unit has a Forested class, check if: □ The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover) that each cover 20% within the Forested polygon 	1
H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods). □ Permanently flooded or inundated 4 or more types present: points = 3 □ Seasonally flooded or inundated 3 types present: points = 2 ☑ Occasionally flooded or inundated 2 types present: points = 1 ☑ Saturated only 1 type present: points = 0 □ Permanently flowing stream or river in, or adjacent to, the wetland Seasonally flowing stream in, or adjacent to, the wetland □ Seasonally flowing stream in, or adjacent to, the wetland 2 points □ Lake Fringe wetland 2 points □ Freshwater tidal wetland 2 points	1
H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft ² . Different patches of the same species can be combined to meet the size threshold and you do not have to name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle If you counted: > 19 species points = 2 5 - 19 species points = 1 < 5 species	2
H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i> <i>have four or more plant classes or three classes and open water, the rating is always high.</i> None = 0 points All three diagrams in this row are HIGH = 3points	0

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

H 1.5. Special habitat features:		
Check the habitat features that are present in the wetland. The number of checks is the number of points.		
Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).		
Standing snags (dbh > 4 in) within the wetland		
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)		
Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	4	
At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)		
Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)		
Total for H 1Add the points in the boxes above	8	
Rating of Site Potential If score is: \Box 15-18 = H \boxtimes 7-14 = M \Box 0-6 = L Record the rating on the first page		

H 2.0. Does the landscape have the potential to support the habitat functions of the s	site?	
H 2.1. Accessible habitat (include only habitat that directly abuts wetland unit).		
Calculate: % undisturbed habitat: 0+ [(% moderate and low intensity land uses)/2]: 0 =0	1% If total accessible	
habitat is:		
> 1/3 (33.3%) of 1 km Polygon	points = 3	0
20-33% of 1 km Polygon	points = 2	
10-19% of 1 km Polygon	points = 1	
< 10% of 1 km Polygon	points = 0	
H 2.2. Undisturbed habitat in 1 km Polygon around the wetland.		
Calculate: % undisturbed habitat: 4 + [(% moderate and low intensity land uses)/2]: 0 =	4%	
Undisturbed habitat > 50% of Polygon	points = 3	0
Undisturbed habitat 10-50% and in 1-3 patches	points = 2	0
Undisturbed habitat 10-50% and > 3 patches	points = 1	
Undisturbed habitat < 10% of 1 km Polygon	points = 0	
H 2.3. Land use intensity in 1 km Polygon: If		
> 50% of 1 km Polygon is high intensity land use	points = (- 2)	-2
≤ 50% of 1 km Polygon is high intensity	points = 0	
Total for H 2 Add the po	pints in the boxes above	-2

Rating of Landscape Potential If score is: \Box **4-6 = H** \Box **1-3 = M** \boxtimes **< 1 = L**

Record the rating on the first page

H 3.0. Is the habitat provided by the site valuable to society?		
H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? Choose only	the highest score	
that applies to the wetland being rated.		
Site meets ANY of the following criteria:	points = 2	
It has 3 or more priority habitats within 100 m (see next page)		
\square It provides habitat for Threatened or Endangered species (any plant or animal on the	e state or federal lists)	
It is mapped as a location for an individual WDFW priority species		2
It is a Wetland of High Conservation Value as determined by the Department of Natural Resources		
It has been categorized as an important habitat site in a local or regional comprehensive plan,		
in a Shoreline Master Plan, or in a watershed plan		
Site has 1 or 2 priority habitats (listed on next page) within 100 m	points = 1	
Site does not meet any of the criteria above	points = 0	
Rating of Value If score is: $\square 2 = H \square 1 = M \square 0 = L$	Record the rating on t	the first page

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

ie j 'Y

WDFW Priority Habitats

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

□ **Aspen Stands:** Pure or mixed stands of aspen greater than 1 ac (0.4 ha).

□ **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).

□ **Herbaceous Balds:** Variable size patches of grass and forbs on shallow soils over bedrock.

 \Box **Old-growth/Mature forests:** <u>Old-growth west of Cascade crest</u> – Stands of at least 2 tree species, forming a multi- layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> – Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.

□ **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 – see web link above*).

Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.

□ **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 – see web link above*).

⊠ **Instream:** The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.

□ **Nearshore**: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report – see web link on previous page*).

□ **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.

□ **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.

□ **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 - 6.5 ft (0.15 - 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.

 \boxtimes **Snags and Logs:** Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Wetland Type	Category				
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.					
SC 1.0. Estuarine wetlands					
Does the wetland meet the following criteria for Estuarine wetlands?					
\Box The dominant water regime is tidal,					
Vegetated, and					
□ With a salinity greater than 0.5 ppt □ Yes –Go to SC 1.1 ⊠ No= Not an estuarine wetland					
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	Cat I				
$\Box Yes = Category I \Box No - Go to SC 1.2$					
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?					
\Box The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has	Cat. I				
less than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)					
\Box At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or	Cat II				
un- mowed grassland.					
☐ The wetland has at least two of the following features: tidal channels, depressions with open water,					
or contiguous freshwater wetiands.					
SC 2.0. Wetlands of High Conservation Value (WHCV)					
SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High					
Conservation Value? \Box Yes – Go to SC 2.2 \boxtimes No – Go to SC 2.3					
SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?					
□Yes = Category I □No = Not a WHCV	Cat. I				
bttp://www.1.dpr.wa.gov/php/refdesk/datasearch/wphpwetlands.pdf					
$\Box Yes - Contact WNHP/WDNR and go to SC 2.4 \Box No = Not a WHCV$					
SC 2.4. Has WDNR identified the wetland within the S/T/R as a Wetland of High Conservation Value and listed it on					
their website? \Box Yes = Category I \Box No = Not a WHCV					
SC 3.0. Bogs	1				
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key					
below. If you answer YES you will still need to rate the wetland based on its functions.					
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or					
more of the first 32 in of the soil profile? \Box Yes – Go to SC 3.3 \boxtimes No – Go to SC 3.2					
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep					
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or					
pond? \Box Yes – Go to SC 3.3 \boxtimes NO = Is not a bog	Cat I				
So S.S. Does an alea with peaks of marks have more than 70% cover of mosses at ground level, AND at least a 50% cover of plant species listed in Table 42.	Cat. 1				
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by					
measuring the nH of the water that seens into a hole dug at least 16 in deep. If the nH is less than 5.0 and the					
plant species in Table 4 are present, the wetland is a bog.					
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,					
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the					
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?					
□Yes = Is a Category I bog □No = Is not a bog					
SC 4.0. Forested Wetlands					
---	----------	--	--	--	--
 Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate the wetland based on its functions.</i> Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more. Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm). 					
□Yes = Category I ⊠No = Not a forested wetland for this section					
SC 5.0. Wetlands in Coastal Lagoons					
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?					
\square The wetland lies in a depression adjacent to marine waters that is wholly or partially separated					
from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks					
\Box The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5					
ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the	Cat. I				
bottom)					
□ Yes – Go to SC 5.1 No = Not a wetland in a coastal lagoon					
SC 5.1. Does the wetland meet all of the following three conditions?					
\square The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has	Cat. II				
less than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100).					
\square At least st of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or					
un- mowed grassland.					
\Box The wetland is larger than $1/_{10}$ ac (4350 ft ²)					
□Yes = Category I ⊠No = Category II					
SC 6.0. Interdunal Wetlands					
Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If					
you answer yes you will still need to rate the wetland based on its habitat functions.	Catl				
In practical terms that means the following geographic areas:	Cati				
Long Beach Peninsula: Lands west of SR 103					
Grayland-Westport: Lands west of SR 105					
Ocean Shores-Copalis: Lands west of SR 115 and SR 109	Cat. II				
\Box Yes – Go to SC 6.1 \Box No = not an interdunal wetland for rating	catin				
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M	Cat. III				
for the three aspects of function)? \Box Yes = Category I \Box No – Go to SC 6.2					
SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?					
\Box Yes = Category II \Box No – Go to SC 6.3	Cat. IV				
SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac?					
□Yes = Category III □No = Category IV					
Category of wetland based on Special Characteristics	NA				
If you answered No for all types, enter "Not Applicable" on Summary Form					

Wetland name or number _____

This page left blank intentionally

Figure 1: H1.1, H1.4, H1.2, H1.1

- Forested / Saturated Only
- Ponded Depressions / Occasionally flooded
- Stream present but it comprises less than 10% of wetland.

Figure 2: R2.4, R1.2, R4.2, R4.1

Areas of dense tree and shrub

Areas of dense emergent

150-foot buffer

Stream

1km radius

Relatively undisturbed habitat

Figure 4: R2.2, R5.2

Contributing basin

Figure 5: R3.1

Water Quality Improvement Projects (TMDLs)

WATER QUALITY IMPROVEMENT PROJECTS (TMDLs)

Overview of the process

Project Catalog by WRIA by County

Funding Opportunities Project Development Priority Lists

Related Information TMDL Contacts

RELATED ECOLOGY

PROGRAMS

Water Quality

Water Quality Improvement > Water Quality Improvement Projects by WRIA > WRIA 8: Cedar-Sammamish

WRIA 8: Cedar-Sammamish

The following table lists overview information for water quality improvement projects (including total maximum daily loads, or TMDLs) for this water resource inventory area (WRIA). Please use links (where available) for more information on a project.

Counties • <u>King</u>

<u>Snohomish</u>

Waterbody Name	Pollutants	Status**	TMDL Lead				
Ballinger Lake	Total Phosphorus	Approved by EPA	<u>Tricia Shoblom</u> 425-649-7288				
<u>Bear-Evans Creek Basin</u>	Fecal Coliform Dissolved Oxygen Temperature	Approved by EPA Approved by EPA	<u>Joan Nolan</u> 425-649-4425				
Cottage Lake	Total Phosphorus	Approved by EPA Has an implementation plan	<u>Tricia Shoblom</u> 425-649-7288				
Issaguah Creek Basin	Fecal Coliform	Approved by EPA	Joan Nolan 425-649-4425				
Little Bear Creek Tributaries: Great Dane Creek Cutthroat Creek	Fecal Coliform	Approved by EPA	<u>Ralph Svricek</u> 425-649-7036				
North Creek	Fecal Coliform	Approved by EPA Has an implementation plan	<u>Ralph Svricek</u> 425-649-7036				
Pipers Creek	Fecal Coliform	Approved by EPA	<u>Joan Nolan</u> 425-649-4425				
Sammamish River	Dissolved Oxygen Temperature	Field work starts summer 2015	<u>Ralph Svricek</u> 425-649-7036				
Swamp Creek	Fecal Coliform	Approved by EPA Has an implementation plan	<u>Ralph Svricek</u> 425-649-7036				

** Status will be listed as one of the following: Approved by EPA, Under Development or Implementation

Figure 6: R3.2, 3.3

Appendix K WSDOT Coordination

Appendix K.1 Gabion Wall Report

May 28, 1980

R. W./

11/11

DEPARTMENT OF TRANSPORTATION INTRA-DEPARTMENTAL COMMUNICATION

FROM:

DATE:

To:

.

Phone:

Clerc/A, P. Kilian SUBJECT:

C.S. 1748, SR-104, L-5414 25th Ave. N.E. Vic. to Jct. SR-522 Gabion Walls #1, #2, and #3

Foundations

C. S. Gloyd/G. T. Markich

Please find attached for your review Retaining Wall Data Sheets, wall plan and profile sheets, copies of District test hole logs, and transmittal IDC.

We concur with Mr. Whalen's recommendation for unsuitable removal at wall #1. The open excavation cavities for these walls should be inspected by District Materials prior to backfilling. Backfill material should be gravel borrow compacted to 95 percent of maximum density.

You will note the District requests an early review.

RVL:gmh APK

Attach.

cc: K. E. Whalen R. A. Arwine

May 26, 1980 DATE: K.E. Whalen FROM:

R. V. LeClerc

DEPARTMENT OF HIGHWAYS INTRA-DEPARTMENTAL COMMUNICATION

SUBJECT: C.S. 1748 SR 104 25th Ave. N.E. Vic. to Jct. SR 522 Gabion Walls L - 5414

Attached for your review are Retaining Wall Data Sheets and test hole data for subject Gabion Walls. Our observations and recommendations for these walls are as follows.

Gabion # 1

Test holes with penetrometer tests and probes reveal a soft surface layer of Gravelly Clay and Silt over course silty This clay was deposited by a stream to an average depth of sand. 4.0'. We recommend removal of this soft material and backfilling the resulting void with Gravel Borrow to construct a base for the Gabions.

Gabion # 2

Probes and test holes in this area encountered stream bed gravel. Adjacent native materials also consist of Sand and Gravel indicating that dense foundation materials exist deeper then we were able to drill.

Gabion# 3

Foundation materials for this wall consist of slightly gravelly sand. Portable penetrometer information shows adequate bearing for the wall.

P S & E for this project is now being reviewed by headquarters. A review of the Gabion Walls is holding up the setting of the ad Your expeditious review would be appreciated. date.

Attachments REA/bm cc: R.A. Arwine

тο:

ADDITIONAL SKETCHES REQUIRED:

- 1. Profile of Complete Retaining Wall
- 2. Sketch showing location of sewer lines, water mains, etc.
- 3. Sketch showing type and location of all surcharges (buildings, bridge footings, streets, etc.) located above the proposed footing elevation of the wall within a horizontal distance equal to three times the wall height.
- 4. Sketch showing all planned drainage (applies to drainage behind wall) and how seepage and runoff are to be handled. Mention if areas of heavy seepage are anticipated.

REMARKS-

DOT REVISED 10/75

Figure 342<u>-</u>4 342-7

Oct., 1979

DEPARTMENT OF TRANSPORTATION

			IG WALL DAT	ASTEET	
	list. No	Control Section1748	SR No. 104	Job No5414	Date 21,50
	reject 25th Avel	NE Vic to Jet SR 522	·	Prepared By	wine/IBI
Y	Vall Type Planned	Gabion No. 2			
	.,h1=0	$51 \pm 0 = 1.51$ $3 = 115 = 115 = 115 = 115$ $Back fill Material$ $B' = 15 \circ$ $C = -Psf$ $S = 100 Pcf$	Show Locat Fill Materia Const C =	tion of Water Table: I or Native Soil = $\frac{F_{x/s}f_{y}}{F_{w}cf_{ed}}$ $\frac{F_{w}cf_{ed}}{W_{y}f_{h}}$ $\frac{F_{y}cf_{ed}}{F_{sf}}$	ng embankments avel
s S	h2 = _	1.0' $8' = 35$ $C = Psf$ $8' = 60 Pcf$	Foundation Allowab Recomm Pile Sup Pile Typ	a Soil <u>Sundy</u> le Bearing Value: <u></u> nended Footing Elev. <u>A</u> port: Yes <u>-</u> M e:	<u>Grave</u> <u>2.0</u> <u>5 Show</u> 10 <u>X</u>

ADDITIONAL SKETCHES REQUIRED:

- 1. Profile of Complete Retaining Wall
- 2. Sketch showing location of sever lines, water mains, etc.
- 3. Sketch showing type and location of all surcharges (buildings, bridge footings, streets, etc.) located above the proposed footing elevation of the wall within a horizontal distance equal to three times the wall height.
- 4. Sketch showing all planned drainage (applies to drainage behind wall) and how seepage and runoff are to be handled. **Mention** if areas of heavy seepage are anticipated.

REMARKS-

99 1-66

		MENT OF TRANSPORT	ATION A EET	
pist. No Control Section	on_1748	SR No. 104	Job No.1-5414	Date 5/21/80
Project 25th Ave. N.E. to	Ict SR-522	· .	Prepared By <u>A</u>	rwine/IBI
Wall Type Planned Gabion	No. 3	· · · · · · · · · · · · · · · · · · ·		
$h_{1} = 0.0!$ $\frac{2}{3}$ $\frac{1}{3}$	aterial Gai bion	Show Loca Fill Materi Const C = 8 =	ation of Water Table: al or Native Soil = <u>Exist</u> tructed with San <u>32</u> ol <u>32</u> ol <u>95</u> f <u>125 Pcf</u>	Ing embon Kments
		Foundatio	n Soil Sitty Gra	avelly Sand
$h_2 = \underline{1 \cdot 0}$	$8' = \underline{35}$ $C = \underline{50}$ $8' = \underline{10}$ Pct	Allowal Recom Pile Su Pile Ty	ble Bearing Value: mended Footing Elev pport: Yes pe:	<u>1.0</u> Tst <u>45 Shown</u> No X

ADDITIONAL SKETCHES REQUIRED:

- Profile of Complete Retaining Wall 1.
- 2. Sketch showing location of sewer lines, water mains, etc.
- Sketch showing type and location of all surcharges (buildings, bridge footings, streets, etc.) located above the proposed footing 3. elevation of the wall within a horizontal distance equal to three times the wall height.
 - Sketch showing all planned drainage (applies to drainage behind wall) and how seepage and runoff are to be handled. Mention if areas of heavy seepage are anticipated.

REMARKS

....

FOP DOT ΕØ 10/79

Figure 342-1d 342-7

SUMMARY OF QUANTITIES														DOT_RGG900 6/23/2016							
ITEM NO	TOTAL QUANTITY	SUB-TOTAL * SECTION I-07.2(1) OF STANDARD SPECS	SUB-TOTAL ** SECTION I-07.2(2) OF STANDARD SPECS	STD. ITEM NO.	UNI	T ITEM	GROUP 1 A LINE 10+00.0 TO 11+75.0	GROU THIF PART DAMA	IP 2 RD TY GE												
						PREPARATION															
1	LUMP SUM	LUMP SUM		0001	L.S	MOBILIZATION	L.S.	<u> </u>				<u> </u>									
2	LUMP SUM	LUMP SUM	1	0050	L.S.		L.S.	<u> </u>				<u> </u>					<u> </u>	<u> </u>			
3	0.10	0.10		0025			0.10					<u> </u>						1			
4	2000.00	2000.00	l	0234			2,000.00	1		I		<u> </u>	I						<u> </u>	I	
		1		1		GRADING]	1			1	1		1						I	
5	30.00	30.00	1	0310	C.Y	ROADWAY EXCAVATION INCL. HAUL	30.00	1			1	1		1			1	1		I	i
i			Ì	1			<u>_</u>	1		İ	İ						1		i i	i	
				1		DRAINAGE		İ	Í	Ì		İ		İ			İ	İ	i i		
6	5000.00	5000.00		3076	DOI	FISH EXCLUSION	5,000.00														
7	32000.00	32000.00			DOI	TEMPORARY STREAM DIVERSION	32,000.00	1													
				<u> </u>				<u> </u>				<u> </u>									
								<u> </u>				<u> </u>					<u> </u>				
8	LUMP SUM	LUMP SUM	1	4013	L.S.		L.S.	<u> </u>										1			
9	180.00	180.00		4025		SHAFT - 24 IN DIAMETER	180.00	1				1						1		I	
11	178.00	178.00	1	4053		FURNISHING SOLDIER PILE W12X106	178.00	1			1	<u> </u> 		I			1	1			
12	481.00	481.00		4299	S.F.		481.00	1									1	1			
								i	İ	i	1	İ		1			1			I	
						EROSION CONTROL AND ROADSIDE PLANTING	i	İ				İ					İ		i i	İ	
13	5.00	5.00		6403	DAY	ESC LEAD	5.00														
14	1.00	1.00		6471	EAC	H INLET PROTECTION	1.00														
15	68.00	68.00		6470	HR	STREET CLEANING	68.00											<u> </u>			
16	84.00	84.00		6502	L.F.	COIR LOG	84.00	<u> </u>				<u> </u>									
17	20000.00	20000.00		6490	DOL		20,000.00	<u> </u>				<u> </u>									
18	0.10	0.10		6414			0.10	<u> </u>				<u> </u>						1			
20	122 00	123.00		0030			123.00	1		I	I	1	I			 	1	1		I	
20	5.00	5.00	1	1	I SY		5.00	1				<u> </u>					1	1	I I	I	
	0.00	0.00		1	0.11			1									1	1			
j				i		TRAFFIC	<u></u>	i	İ	i	i	i		i	I		i	i			
22	LUMP SUM	LUMP SUM		6971	L.S	PROJECT TEMPORARY TRAFFIC CONTROL	L.S.	<u> </u>	ĺ			İ									
23	LUMP SUM	LUMP SUM		6869	L.S	PEDESTRIAN TRAFFIC CONTROL	L.S.														
							I														
				<u> </u>		OTHER ITEMS	!	<u> </u>		!	<u> </u>	<u> </u>								<u> </u>	
24	10.00	10.00		7015	C.Y	CONTROLLED DENSITY FILL	10.00	<u> </u>				<u> </u>									
25	LUMP SUM			7037	L.S.		L.S.	<u> </u>		I	<u> </u>	<u> </u>						<u> </u>		I	
26	LUMP SUM		1	7038			L.S.	<u> </u>			1	<u> </u>					1	1			
28	5000 00	5000 00	l	7480			5 000 00	1		<u> </u>	<u> </u>	1	<u>I</u>		1	<u> </u>	1	1		<u> </u>	I
29	5.00	5.00	ı 	7725				5.0	0	I	<u> </u>	<u> </u>		ı 	ı 		1	1		I	I
30	-1,00	-1.00	1 	7728				1	-			1	 	 	1		1	1			
31	-1.00	-1.00		7732	DOI	AGGREGATE COMPLIANCE PRICE ADJUSTMENT	-1.00	i			i	i		i	i		i	i			
32	LUMP SUM	LUMP SUM		7736	L.S	SPCC PLAN	L.S.	1			<u> </u>	1									
33	45.00	45.00			L.F.	TEMPORARY CONSTRUCTION FENCE	45.00							1							

GROUP LEGEND :	GROUP NUMBER	SR	CONTROL SECTION	TAX SCHEDULE	FUND PARTICIPANTS
	1	104	174801	*	FEDERAL,STATE
	2	104	174801	*	STATE

			REGION	STATE	FEDERAL AID PROJECT. NO.	
			10	wa	ER-NHPP-1604(010)	
				WA		Washington State
			JOB NUMBER 16A009/2			Department of Transportation
			CONTR	RACT NO		
DATE	REVISION	BY	000	0000		

SR 104 NE 195TH ST GABION ROCK WALL EMERGENCY REPAIR

SUMMARY OF QUANTITIES

SQ1

SHEET 2 OF 16 SHEETS

QUANTITY TABULATION - SITE PREPARATION

NOTE: THE F REFEF CONS THE S CONS SHEE	: IRST NU RS TO T RENCE I TRUCTI SECOND TRUCTI T.	JMBER OF THE " THE SHEET NO. (NO. SHOWING T ON FEATURE. NUMBER REFEI ON FEATURE FC	"CODE" BE OR THE SH "HE RS TO THE DUND ON "	ELOW HEET E THAT	EMOVING CHAIN LINK FENCE OR INFORMATION ONLY	EMOVING EXISTING CULVERT IPE :OR INFORMATION ONLY)	IEMOVING EXISTING CULVERT IPE COLLAR OR INFORMATION ONLY)	IEMOVING EXISITNG GABION OCK WALL OR INFORMATION ONLY)		ALET PROTECTION	IGH VISIBILITY FENCE		HAIN LINK FENCE TYPE 6	EMPORARY CONSTRUCTION ENCE				
CODE	LOC			URE >	<u> </u>	<u> </u>	EACH	<u> </u>		 EACH	L.F.		U L.F.					┢
SP1-1	A 10+09).9 (7.2' RT) TO A	10+61.4 (1	15.6' RT)	40				<u> </u>				40					┢
_		- () -		/	-													
SP1-2	A 10+07	7.1 (7' RT) TO A 1	0+63.2 (14	' RT)										45				-
SP1-3	A 10+18	8.4 (14.7' RT) TO /	A 10+34.0	(25.4' RT)				16										$\left \right $
SP1-4	A 10+32	2.0 (15.7' RT)					1											
SP1-5	A 10+32	2.0 (15.7' RT) TO /	A 10+25.1	(20.7' RT)		7												╞
SP1-6	Δ 10,73	5 (45 2' PT) TO	Δ 11,07 2	(15 2' PT)							70							┢
	A 10+73	0.0 (40.2 HT) TO 7	A 11+07.5	(13.2 m)							70							
SP1-7	A 11+60).3 (7' RT)								1								┢
SP1-8	A 10+35	5.2 (41.3' LT) TO A	A 10+43.5 ((57.9' LT)							30							
SP1-9	A 10+50	0.1 (53.1' LT) TO A	A 11+30.7 (29.74' LT)							120							\bot
																		╞
																		┢
																		+
																		+
					l									l				+
																		L
																		╞
																		1
																		┢
																		\mathbf{t}
																		+
																		t
																		\bot
																		+
																		\mathbf{t}
																		F
			SHEI	ET TOTAL	40	7	1	16		1	220		40	45				+
			PROJE	CT TOTAL	40	7	1	16		1	220		40	45				
									REGION NO.	STATE	FED. AID	PROJ. NO.						
DECION									10									
FNTER		S.N. WENDT	+						10	WASH							0	
CHECK	EDBY	J. DAVIES	+						JOB N	UMBER	1					Nashington Department	State of Transpo	orta
PROJ. E	NGR.	J.CHI							16A	.009							I , -	
REGION	ADM.	L.ENG							CONTR	ACT NO.	1							
			DATE	DATE		REVISION		BY										

	SEE GENERAL NOTES	GENERAL NOTES:	
		 FOR INFORMATION ONLY. PAID FOR AS OF THE BID ITEM "REMOVAL OF STRUCTUL AND OBSTRUCTIONS. SEE THE SPECIAL PROVISIONS. SEE SHEET MD1 FOR DETAILS. SEE STD. PLAN I-40.20-00. SEE STD. PLAN I-40.10-01. SEE "CHAIN LINK FENCE AND WIRE FENT THE SPECIAL PROVISIONS FOR DETAILS. STATIONING SHOWN IS AT THE FRONT FOR THE EXISTING WALL. 	PART RES CE" IN FACE
ation	NE	SR 104 195TH ST GABION ROCK WALL EMERGENCY REPAIR	QTSP 1 SHEET
	QUANT	TITY TABULATION - SITE PREPARATION	4 OF 16 SHEETS

DATE

P.E. STAMP BO

DATE

P.E. STAMP BOX

PROJ. ENGR.

REGIONAL ADM. L. ENG

J. CHI

REVISION

DATE

BY

	HVF LAYOL	JT SCHEDU	LE				
NORTHWEST	SIDE HVF	SOUTH SIDE HVF					
STATION	OFFSET	STATION	OFFSET				
A 10+35.2	41.3' LT	A 10+59.8	37.3' RT				
A 10+40.4	61.1'LT	A 10+76.4	15.6' RT				
A 10+43.5	57.9' LT	A 11+07.3	15.2' RT				
NORTHEAST	SIDE HVF						
STATION	OFFSET						
A 10+50.1	53.1'LT						
A 10+55.9	50.7' LT						
A 10+57.6	26.0' LT						
A 10+79.4	29.6' LT						
A 11+30.7	29.7' LT						

EXISTING 66" DIAM.

CLEARING AND GRUBBING LIMITS

NORTH	SIDE	SOUTHEAST SIDE					
STATION	OFFSET	STATION	OFFSET				
A 10+35.2	41.3' LT	A 10+34.0	25.4' RT				
A 10+40.4	61.1'LT	A 10+39.8	22.5' RT				
A 10+43.5	57.9' LT	A 10+46.9	13.7' RT				
A 10+48.5	37.1'LT	A 10+76.4	15.6' RT				
A 10+53.2	41.9' LT	A 10+59.7	37.3' RT				
A 10+50.1	53.1'LT	A 10+37.6	28.4' RT				
A 10+55.9	50.7' LT	A 10+37.6	25.4' RT				
A 10+57.7	24.8' LT						
A 10+40.4	34.3' LT						
A 10+35.2	41 3'LT						

NOTES:

1. FOR ALIGNMENT DETAILS, SEE SHEET AL1.

2. SEE SHEET MD1 FOR FRONT WALL FACE SLOPE DETAILS.

5						
ICTION						
		SR 104 NE 195TH ST GABION ROCK WALL	Plot 2 plan ref no MD2			
State sportati	on					
•		MISCELLANEOUS DETAILS	16 SHEETS			

	ARE	ATOTALS	
TEM	N	S	
SOIL AMENDMENT (SEE SHT SPP2 AND MD2)	84	39	SY
SEEDING, FERTILIZING AND MULCHING	0.02	0.01	AC
TOPSOIL TYPE A - 12" (SEE SHT MD2)	-	5	SY
SEEDING, FERTILIZING AND MULCHING	-	0.001	AC
COIR LOG	37	47	LF

SECTION VIEW

	T-1442000()VI 5240 CD 404 C-1								
FILE NAME	1:14120061AL5249 SR 104 Ga	bion wall CED/CAD/ContractPlans/XL5190_PS_SPP.dgn						STATE UP	
TIME	2:49:37 PM				REGION STATE	FED.AID PROJ.NO.	MININ	WASHINGTON	
DATE	6/23/2016					1			
PLOTTED BY	floreac						LAND	ISCAPE ARCHITECT	
DESIGNED BY	C.FLOREANI				JOB NUMBER				Washington Sta
ENTERED BY	C.FLOREANI				164009			VID S. PETERSON	
CHECKED BY	L.JUNGBLUTH				CONTRACT NO.	LOCATION NO.		TIFICATE NO. 476	Department of Transp
PROJ. ENGR.	J.CHI]			E:	
REGIONAL ADM.	L.ENG	REVISION	DATE	BY			EXPI	IRES: 02/04/2017	

State	
sportation	

SOIL PREPARATION DETAILS

NE 195TH ST GABION ROCK WALL **EMERGENCY REPAIR**

SHEET 9 OF 16 SHEETS

SR 104

LEGEND

TEST BORING HOLE

GENERAL NOTES

1. ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR ROAD, BRIDGE AND

2. THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE REQUIREMENTS OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS - 7TH EDITION - 2014 WITH INTERIMS.

3. THE SEISMIC DESIGN PARAMETERS HAVE BEEN DETERMINED IN ACCORDANCE WITH THE AASHTO GUIDE SPECIFICATIONS FOR LRFD, 2ND EDITION 2011, USING SITE CLASS D, AN EFFECTIVE PEAK GROUND ACCELERATION COEFFICIENT (As) OF 0.437 AND A SEISMIC HORIZONTAL ACCELERATION COEFFICIENT

4. W SECTION STEEL SOLDIER PILES SHALL CONFORM TO ASTM A992. SOLDIER PILES SHALL BE PAINTED TO THE LIMITS SHOWN IN THE PLANS IN ACCORDANCE WITH SECTION 6-16.3(4).

5. STEEL & PERMANENT LAGGING SHALL CONFORM TO ASTM A 572 GRADE 50.

6. TREATED TIMBER PERMANENT LAGGING SHALL BE DOUGLAS FIR-LARCH GRADE NO. 2 CONFORMING TO SECTION 9-02.(11) TREATED IN ACCORDANCE WITH SECTION 9-09.3.

7. LAG SCREWS AND NAILS SHALL CONFORM TO SECTION 9-06.22, GALVANIZED AFTER FABRICATION IN

9. EXISTING GROUND LINE IS APPROXIMATE AND SHALL BE VERFIED BY THE CONTRACTOR IN THE FIELD.

10. SEE OTHER PLANS FOR FINISH GROUND ELEVATION AT FRONT AND BACK OF THE SOLDIER PILE WALL.

SOLDIER PILE WALL

	SR 104 NE 195TH ST GABION ROCK WALL EMERGENCY REPAIR	BRIDGE SHEET NO. W1
ortation		SHEET 10
	LAYOUT	₀⊧ 16
		SHEETS

FILE

R

	SR 104	BRIDGE SHEET NO.
	NE 195TH ST GABION ROCK WALL	W2
ortation		SHEET 11
	SOLDIER WALL ELEVATION	₀⊧ 16
		SHEETS

-24"Ø SOLDIER PILE SHAFT (TYP.)

-W12 x 106 SOLDIER PILE (TYP.)

SOLDIER PILE TYPE	EMBEDMENT DEPTH "D"	TOTAL LENGTH OF SOLDIER PILE	SHAFT DIAMETER
W 12 x 106	12'-6"	31'-1½"	24"
W 12 x 106	12'-6"	30'-5 % "	24"
W 12 x 106	12'-6"	29'-10"	24"
W 12 x 106	12'-6"	29'-1"	24"
W 12 x 106	12'-6"	28'-6¾"	24"
W 12 x 106	12'-6"	28'-1½"	24"

- BACK OF EXISTING SIDEWALK

	Bridge Design Engr.	Khaleghi, B		м:\z-т	eam\SR 104 GABION WALL REPAIR\Wi	ndow	files\C	ULVER	T DETAILS	S.WND			يعتقص	v	ويعلقنى	
į	Supervisor	Zeldenrust, RP						REGION NO.	STATE	FED. AID PROJ. NO.	SHEET NO.	TOTAL SHEETS	CHAN Ster	PRIDCE	P. ZELDA	
١.	Designed By	Bedi, G	05/16										DE SE OF MASHINE DE	BRIDGE	STATE OF MASHING POR	
	Checked By	O'Leary, M	06/16					10	WASH.					AND		Washington State
	Detailed By	Avery, D	05/16											STRUCTURES	The state and	Department of T
	Bridge Projects Engr.							16/	NUMBER 4009				A RECISTERED AV	OFFICE	TO AT 25470 EN EN	Department of Th
2	Prelim. Plan By							CONT	RACT NO.				SSIONAL ENGLIST	OFFICE	SIONAL ENGLA	
	Architect/Specialist			DATE	REVISION	BY	APP'D						1992228 ⁴ 4		A PRESS	
	Tue Jun 21 11:53:42	2016														

16A009

CONTRACT NO.

DATE BY

REVISION

LOCATION NO.

ENTERED BY

CHECKED BY

REGIONAL ADM. L. ENG

PROJ. ENGR.

K. PECHA

S. WENDT

J. CHI

DATE

P.E. STAMP BOX

DATE

P.E. STAMP BOX

			Plot 1
		SR 104	PLAN REF NO
		NE 195TH ST GABION ROCK WALL	PTC1
	Washington State Department of Transportation	EMERGENCY REPAIR	SHEET 16 OF
_		PEDESTRIAN TRAFFIC CONTROL PLAN	16 SHEETS

Appendix K.3 Fish Exclusion Report

WSDOT

PROJECT: SRIOY NE 199	Sth ST GABION	WALL REPAIR FG. OF
DATE: 9/10/16	WEATHER:	PARTLY CLOUDY
LOCATION/WATERBODY: BALLINGER	2 CREEK	AIR TEMPERATURE: 60 °F
CREW: GROSS, MC GOVERN, KAPANTA	15	WATER TEMPERATURE: 12°C
DATA RECORDER: KAPANTHIS, GROSS	CAPTURE ME	THODS: E-FISH / DIP NET

ELECTROFISHING DATA¹:

ELECTROFISHER MODI	EL: · LR 24	6		
WATER CONDUCTIVITY	<i>:</i>			
PULSE RATE:	30 47			
VOLTAGE SETTING:	300			
PASSES (INCLUDE # ANI	DURATION):	3	5	

FISH COLLECTION/EXCLUSION DATA:

TIME	SPECIES	FORK	CONDITION	SAMPLE	TECHNIQUES/	COMMENTS/
		LENGTH	-	(Y/N)	METHODS	NOTES
9:00 Am	Со		6000	N	E-Fish	ALL RELEATSED
	CT		6000	N	ELFISH	DOWNSTREAM
	CT		6000	N	E-Fish	
		· · ·				
						i !
			1			
						· · ·
			•.			
	-		3			
-						
2						
						· · ·
	TIME 9:00Am	TIME SPECIES 9:00/m C0 CT CT CT CT	TIME SPECIES FORK 9:00Am CO CT CT <	TIME SPECIES FORK CONDITION 9:00/m CO 6000 CT <td>TIME SPECIES FORK CONDITION SAMPLE (Y/N) 9:00/m CO 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT CT 6000 CT CT 6000 CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT <td< td=""><td>TIME SPECIES FORK LENGTH CONDITION SAMPLE (Y/N) TECHNIQUES/ METHODS 9:00Am C0 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 0 0 0 Image: Second S</td></td<></td>	TIME SPECIES FORK CONDITION SAMPLE (Y/N) 9:00/m CO 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6600 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT 6000 N CT CT 6000 CT CT 6000 CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT <td< td=""><td>TIME SPECIES FORK LENGTH CONDITION SAMPLE (Y/N) TECHNIQUES/ METHODS 9:00Am C0 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 0 0 0 Image: Second S</td></td<>	TIME SPECIES FORK LENGTH CONDITION SAMPLE (Y/N) TECHNIQUES/ METHODS 9:00Am C0 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 6000 N E * fist CT 0 0 0 Image: Second S

Fish Species Codes:

BH: B	Bullhead	CK: Chinook ²	RT:	Rainbow/steelhead 7	Frout	UN	K: Unknown	
BK: B	Brook Trout	CT: Cutthroat Trout	SC:	Sculpin spp.	,	WH	I: Whitefish	
BR: B	Brown Trout	LAM: Lamprey spp.	SM:	Smelt		X:	Other (i.e.	
BT: B	ull Trout ²	MI: Minnow	SO:	Sockeye			forage fish.	
CH: C	Chum	PI: Pink	ST:	Three-spined stickle	back .		amphibians, etc.)	
CO: C	Coho	PK: Pumpkinseed	SU:	Sucker			I.D. in COMMENT	S

^{1,2}Report to Federal Services pursuant to Section 10 Permits

From:	John Featherstone
To:	Giseburt, Michael S
Cc:	Shelby Petro (spetro@herrerainc.com) (spetro@herrerainc.com)
Subject:	FW: Fish exclusion report for SR 104 NE 195th St Gabion Rock Wall Emergency Project
Date:	Tuesday, November 29, 2016 10:45:08 AM

FYI

From: Gross, Andrew [mailto:GrossA@wsdot.wa.gov]
Sent: Tuesday, November 29, 2016 10:44 AM
To: John Featherstone; Woeck, Robert
Cc: Chi, John; Maas, John
Subject: RE: Fish exclusion report for SR 104 NE 195th St Gabion Rock Wall Emergency Project

Hi John,

Fish were not formally measured. However, they were visually estimated at the following: Coho 70mm cutthroat 70mm cutthroat 110 mm

Thanks,

Andrew Gross

Regional Maintenance Environmental Coordinator WSDOT NW Region Environmental Hours: Mon-Thur, 6:30- 5:00 Office: 206-440-4951 Cell: 206-406-8074 Fax: 206-440-4805

From: John Featherstone [mailto:jfeatherstone@shorelinewa.gov]
Sent: Tuesday, November 29, 2016 9:55 AM
To: Woeck, Robert <<u>WoeckRo@wsdot.wa.gov</u>>
Cc: Chi, John <<u>ChiJ@wsdot.wa.gov</u>>; Maas, John <<u>MaasJA@wsdot.wa.gov</u>>; Gross, Andrew
<<u>GrossA@wsdot.wa.gov</u>>
Subject: RE: Fish exclusion report for SR 104 NE 195th St Gabion Rock Wall Emergency Project

Hi Robert,

Just wanted to follow up on this request – is there any documentation of the size of the Coho and cutthroat? We'd like to include this information in the flood reduction project pre-design report currently in development.

Thanks,

Subject: Fish exclusion report for SR 104 NE 195th St Gabion Rock Wall Emergency Project

Hi John and Dave,

I was also wondering if I might ask you for contact information for whoever would have the fish exclusion report for the recent SR 104 NE 195th St Gabion Rock Wall Emergency

Project. We heard that they found cutthroat trout and Coho salmon upstream of NE 195th St, which is of major interest to the City of Shoreline 25th Ave NE Flood Reduction project. Your assistance is greatly appreciated.

Thanks!

John Featherstone, P.E. Surface Water Engineer City of Shoreline Desk: 206 801 2478 Cell: 206 681 6443

"Working together, protecting our resources, making a difference" - City of Shoreline Public Works Mission

Appendix K.4 Input on Replacement Culvert and Stream Improvements

Memorandum

DATE:	Thursday, November 3, 2016
TO:	WSDOT Representatives
FROM:	John Featherstone, City of Shoreline
CC:	Mike Giseburt, Louis Berger
RE:	WSDOT Input on Key Topics for 25 th Ave NE Flood Reduction Project

This memorandum presents two priority topics for which the City of Shoreline (City) requests WSDOT input related to the 25th Avenue NE Flood Reduction Project: (1) NE 195th Street Culvert Replacement, and (2) the SR 104 Gabion Wall south of NE 195th St (the portion not recently repaired).

The City's project team is currently preparing a predesign study to assess options to reduce flooding of Ballinger (West Lyon) Creek in the vicinity of NE 195th St, 25th Avenue NE, and Ballinger Way NE/SR 104. One likely project element will be to replace the existing culvert underneath NE 195th Street just east of Ballinger Way NE/SR 104. The culvert is actually owned and located within the City of Lake Forest Park (with the corporate limits being on the north edge of the NE 195th Street right-of-way), and also within WSDOT right of way. The City of Shoreline is leading the project (rather than Lake Forest Park) because the existing culvert is undersized and contributes to upstream flooding within the City of Shoreline.

During our preliminary alternative analysis, we identified several important questions where we need WSDOT input. The responses to the questions will help inform the future design of the proposed culvert replacement and related stream channel work.

The City's project team includes Louis Berger as the lead engineering design consultant and Herrera Environmental Consultants as the team's environmental and permitting specialists. We have already had a fair amount of coordination with WSDOT related to the recently-completed SR 104 NE 195th St Gabion Rock Wall Emergency Project. The extents of the WSDOT gabion repair project overlap with the 25th Avenue NE Flood Reduction Project extents.

Description of 25th Avenue NE Flood Reduction Project

Since 2001 the City has received reports of Ballinger Creek flooding areas along 25th Avenue NE between Brugger's Bog Park and NE 195th Street on at least 15 separate occasions. Nearby public and private properties have flooded, including multifamily residences, public rights-of-way, and the City's North Maintenance Facility (NMF) site.

The 25th Avenue NE Flood Reduction Project, which was recommended as a high priority in the City's recently-completed Lyon Creek Basin Plan, is currently evaluating flood reduction approaches potentially affecting a reach of Ballinger Creek extending 2,000 feet from Brugger's Bog Park downstream to the culvert crossing Ballinger Way NE approximately 450 feet south of NE 195th Street.

Hydrologic and hydraulic modeling efforts have confirmed historical and anecdotal observations that this system floods at an approximate 2-year frequency. Modeling determined that the existing piped system – which generally ranges in size from 24 to 36 inches in diameter -- is far below needed capacity.

The portions of the project north of NE 195th St are located within the City of Shoreline, for which local permitting will be coordinated internally with the City of Shoreline Planning and Community Development department. The portions of the project within and south of NE 195th Street are located within City of Lake Forest Park (LFP) and WSDOT rights-of-way (ROW); the project team has already begun and will continue to coordinate with LFP and WSDOT for their regulations and permitting requirements within this area.

Early outreach has also been started with Muckleshoot Indian Tribe Fisheries Division, Washington State Department of Fish and Wildlife (WDFW), Washington State Department of Ecology, and US Army Corps of Engineers seeking permit-related input on project concepts related to stream and wetland critical areas.

The project team has recently completed initial investigations including hydrologic and hydraulic modeling, survey, environmental, and geotechnical. Design alternatives are currently in development to allow the City to consider an array of potential feasible approaches to resolve the existing flooding issue with minimal downstream impacts while complying with critical stakeholder needs and accounting for various constraints, such as spatial/physical and cost limitations.

NE 195th Culvert and SPU Water Line

The existing NE 195th St culvert is a 24" high x 36" wide corrugated metal arch (CMP) which crosses directly below a Seattle Public Utilities 66-inch-diameter water distribution main (Tolt Pipeline). There is little to no clearance between the existing 66" pipe and the 24x36 culvert (see Figure 1 below) – as confirmed by potholing.

Figure 1- Existing NE 195th St culvert crossing profile, showing SPU 66" dia. water pipe

A replacement culvert will need to be fish passable (per WDFW and other permit requirements), which would be an approximately 10-ft wide concrete box culvert partially filled with fish-friendly spawning gravels. Our understanding is that once the NE 195th St culvert is replaced, ownership will transfer from Lake Forest Park to WSDOT (based on a size threshold of a 60-inch diameter or equivalent, the minimum size at which WSDOT is typically responsible for culverts within rights-of-way WSDOT shares with local jurisdictions). As such, we understand that as the future culvert owner, WSDOT will need to review and approve this culvert replacement design.

We have coordinated with Seattle Public Utilities regarding the project and they have indicated that the new culvert must have a minimum clearance 0.5-ft of between the bottom of the 66" pipeline and the top of the new culvert. With this added clearance (where there is no clearance under current conditions) and the thickness of a concrete box culvert (roughly one foot), the soffit (or top) of the new culvert will be approximately 1.5-feet lower than the top of existing culvert.

Lowered culvert depth at NE 195th St will present some major challenges to the City's project because the channel immediately downstream of the culvert has aggraded (raised the creek bed), and also because the downstream channel runs a significant length alongside the failing WSDOT SR 104 gabion basket wall (further described below). If the open vertical height between the top of stream bed gravel and the soffit of the replacement culvert could be designed to match the existing culvert open height (i.e., 2 feet), the new grade of the downstream channel would need to be deepened and re-graded for an approximate two hundred foot length downstream of the culvert (as needed for channel slope). A required open height of the culvert greater than 2 feet would lead to deeper re-grading for an even longer downstream stretch of channel – complicated by the failing gabion wall (see next section). Another concern about lowering the channel is that it's already flat. The invert of the next downstream culvert which crosses Ballinger Way approximately 500 feet downstream, is only 4.3 feet lower than the existing NE 195th culvert.

One culvert design criterion taken from 2015 WSDOT Hydraulics Manual (Section 3-3.2.2) specifies that the 25-year flow depth should not exceed 1.25 x diameter (height) of culvert. Using this criterion the new culvert would have to have a minimum open height of 2.5 feet, which is 0.5 feet greater than the existing opening. A 2.5 foot open height would require lowering the channel elevation by approximately 2 feet from the existing channel elevation, and by more than 2 feet deeper where the channel is aggraded.

The Hydraulics Manual does indicate that exceptions can be made to allow 25-year flow depth to exceed 1.25 x diameter (height) of culvert. Could such an exception apply to this case, and if so what would the City need to provide in order for WSDOT to allow this? Would this memorandum be of sufficient justification to exceed the criteria, provided that the HW/D ratio is less than 3 to5 and upstream properties are not impacted?

Downstream Channel and WSDOT Gabion Wall along Ballinger Way

Downstream from NE 195th Street, a gabion basket wall is located along NE 195th and running approximately 300 feet to southeast along Ballinger Way NE/SR 104. WSDOT recently replaced the failed gabion wall at the south side of NE 195th Street at the culvert outlet under an emergency contract. Downstream of the emergency repair project extents, Ballinger Creek runs directly along the base of this gabion wall, which is in failing condition. The wire fabric of the lower gabion baskets in the flow line of the creek has corroded away completely and some of the rocks from within the gabion baskets have spilled out into the creek. This condition exists along most of the visible gabion wall toe. We have had some earlier discussions with WSDOT about the failing wall during our discussions on the emergency gabion wall repair. A major concern for the City's project is that lowering creek alongside the wall (as described in the previous section) could worsen the failing conditions observed at the toe of the wall.

Figure 2 below shows a preliminary cross section which overlays the potential deeper channel section (due to replacing the NE 195th St culvert) with existing conditions including the existing ground and gabion wall structure (also provided as a standalone PDF email attachment). This cross section was developed based upon 2016 field survey of the channel (conducted by the City's project team) combined with information from the May 1980 Gabion Wall Memorandum, which WSDOT previously provided to the team. The 1980 memorandum does not indicate that the gabion wall design shown is "asbuilt" so this representation should be considered approximate. This cross section is cut approximately 80-ft downstream of the NE 195th St culvert outlet. Proposed channel deepening shown assumes that the channel invert at the culvert outlet will need to be 1.5 feet below the existing culvert and that the existing 2' open vertical height is allowable (i.e., not meeting the 25-year flow requirement, but matching existing open height as requested in previous section). This section illustrates how requiring a greater minimum open vertical height for the replacement culvert would further lower the channel, be more problematic, and even potentially undermine the toe of the wall.

Figure 2- Proposed channel section relative to existing grade and gabion wall

We have also confirmed that there is very little available width of right of way in the narrow corridor shared by Ballinger Creek and the toe of the gabion wall. The City of Shoreline will likely need to coordinate with the City of Lake Forest Park to obtain a new surface water easement to the northeast to provide additional width for stream improvements.

WSDOT Input

We request WSDOT input on these key questions related to the channel improvements and gabion wall. Getting WSDOT input at this point during pre-design is important for the City to know what to expect for future design of required improvements – such as regrading of the stream -- and associated WSDOT permitting expectations.

Questions:

- 1. What minimum open height for new NE 195th culvert would WSDOT allow? As discussed above, allowing the replacement culvert open height to match the existing culvert open height of 2.0 feet would help to minimize some of the complicating issues downstream. Section 3-3.2.2 of the Hydraulics Manual does indicate that exceptions can be made to allow 25-year flow depth to exceed 1.25 x diameter (height) of culvert. Could such an exception apply to this case, and if so what would the City need to provide in order for WSDOT to allow this? Would this memorandum be of sufficient justification to exceed the criteria, provided that the HW/D ratio is less than 3 to 5 and upstream properties are not impacted?
- 2. If WSDOT is unable to accommodate the City's request to allow a culvert open height of 2.0 feet, our team wanted to get some clarification on how WSDOT applies this criteria for fish passable culverts. Figure 3 below shows a 10'x3.6' box culvert with 1.1'-deep spawning gravels placed in the bottom and a low flow thalweg in the spawning channel. In this case, is the height of the culvert to be used in the 25-year flow criteria 2.5' (thus allowing a headwater depth of 3.1 ft. with both depths measured from the thalweg elevation)? Or would culvert height be considered 3.6' (with an allowable 4.5' headwater depth), both as measured from the invert elevation of the box culvert?

Figure 3- NE 195th St Replacement Culvert conceptual dimensions

- 3. It could potentially be mutually beneficial to coordinate repair of the failing gabion wall along SR 104 with the directly adjacent potential stream channel work for the City's project. Does WSDOT have any near term plans to repair/replace this gabion wall such that we can coordinate with you on the timing of improvements? If not, what would the long term plan for the wall?
- 4. If the City needs to move forward with the flood reduction project and needs to lower the channel prior to the timeframe for the WSDOT repair of the failing gabion wall, what measures would WSDOT require for the protection of the wall along the City's project extents for lowering the creek?

Wendt, Shawn

From:	Zeldenrust, Richard
Sent:	Tuesday, November 08, 2016 8:29 AM
То:	Wendt, Shawn; Pittman, Heather; Cuthbertson, Jim; Johnson, Chris J.
Cc:	Chi, John; Heilman, Julie; Frye, Mark; Bedi, Gary
Subject:	RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo
Attachments:	25th Ave - 2 Ballinger Creek Section location.pdf; 25th Ave - 1 Ballinger Creek
	Section.pdf; 25th Ave - 4 WSDOT 1980 gabion wall report.pdf; Shoreline 25th Ave NE WSDOT coordination memo 2016-11-03.pdf; 25th Ave - 3 Survey project extents.pdf

Shawn,

I looked over all the attachments, and found the four questions at the end of the Coordination Memo. I can offer the following:

- 1. This question may be best answered by WSDOT Hydraulics Staff.
- 2. This question may be best answered by a combination of WSDOT Hydraulics and Environmental Staff, possibly with input from WDFW Staff.
- 3. This is really a question for NW Region Staff.

Resonse to Question #4

4. Figure 2 in the Coordination Memo shows the proposed lowered stream bottom elevation to be very close to the bottom of the gabion wall. Any further incision or scour of the stream could undermine the wall, causing failure. Also, as described in the Memo, the existing gabion baskets have begun to fail, due to corrosion, and rock is beginning to spill out of the baskets, into the creek. Total wall replacement could solve both problems. Perhaps a cantilevered sheet pile wall or cantilevered soldier pile wall could be installed immediately behind the existing gabion wall, containing the existing fill and allowing the gabion wall to be removed from the front side (stream side). A new wall, extended deeply enough, would alleviate any scour concerns, would allow removal of the failing gabion baskets, and would provide additional space for routing of the stream. I understand that the 66" water main is buried in the fill beneath Ballinger Way, and that any wall type requiring anchorage back into the fill would not be allowed. Ideas for repairing or retrofitting the existing gabion basket wall in-place include driving sheet pile at the toe of the wall to protect against scour, and/or forming the exposed face of the gabion baskets and pumping some sort of a thin grout into the rock matrix, to try to cement all the rock together into a cohesive unit. These retrofit ideas.

Richard Zeldenrust

Structural Design Unit Supervisor WSDOT Bridge and Structures Office 360-705-7196 <u>zeldenr@wsdot.wa.gov</u>

Wendt, Shawn

From:	Frye, Mark
Sent:	Wednesday, November 09, 2016 4:23 PM
То:	Wendt, Shawn
Cc:	Cuthbertson, Jim
Subject:	FW: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Shawn,

None of the questions were really geotechnical in nature. Rich did a good job of summarizing the concerns regarding the existing gabion basket wall.

Thanks,

Mark A. Frye WSDOT Geotechnical Office 360-709-5469 (Office) 360-951-7267 (cell)

From: Zeldenrust, Richard
Sent: Tuesday, November 08, 2016 08:29
To: Wendt, Shawn <WendtS@wsdot.wa.gov>; Pittman, Heather <PittmaH@wsdot.wa.gov>; Cuthbertson, Jim
<CuthbeJ@wsdot.wa.gov>; Johnson, Chris J. <JohnsoC@wsdot.wa.gov>
Cc: Chi, John <ChiJ@wsdot.wa.gov>; Heilman, Julie <HeilmaJ@wsdot.wa.gov>; Frye, Mark <FryeM@wsdot.wa.gov>;
Bedi, Gary <BediG@wsdot.wa.gov>
Subject: RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Shawn,

I looked over all the attachments, and found the four questions at the end of the Coordination Memo. I can offer the following:

- 1. This question may be best answered by WSDOT Hydraulics Staff.
- 2. This question may be best answered by a combination of WSDOT Hydraulics and Environmental Staff, possibly with input from WDFW Staff.
- 3. This is really a question for NW Region Staff.
- 4. Figure 2 in the Coordination Memo shows the proposed lowered stream bottom elevation to be very close to the bottom of the gabion wall. Any further incision or scour of the stream could undermine the wall, causing failure. Also, as described in the Memo, the existing gabion baskets have begun to fail, due to corrosion, and rock is beginning to spill out of the baskets, into the creek. Total wall replacement could solve both problems. Perhaps a cantilevered sheet pile wall or cantilevered soldier pile wall could be installed immediately behind the existing gabion wall, containing the existing fill and allowing the gabion wall to be removed from the front side (stream side). A new wall, extended deeply enough, would alleviate any scour concerns, would allow removal of the failing gabion baskets, and would provide additional space for routing of the stream. I understand that the 66" water main is buried in the fill beneath Ballinger Way, and that any wall type requiring anchorage back into the fill would not be allowed. Ideas for repairing or retrofitting the existing gabion basket wall in-place include

Wendt, Shawn

From:	Pittman, Heather
Sent:	Wednesday, November 09, 2016 10:10 AM
То:	Zeldenrust, Richard; Wendt, Shawn; Cuthbertson, Jim; Johnson, Chris J.
Cc:	Chi, John; Heilman, Julie; Frye, Mark; Bedi, Gary
Subject:	RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Shawn,

The new crossing would need to meet stream simulation standards unless otherwise approved by WDFW, the Tribes, and WSDOT. Has Anyone confirmed whether the structure will in fact be transferred to WSDOT for ownership as stated in the memo?

4

- 1. We do not have enough information to answer question 1. The headwater criteria cited in the memo is not applicable for stream simulation crossings and the project would not likely meet the stream simulation criteria in the WAC or in the 2013 Water Crossing Design Guidelines (WCDG) by doing so. The memorandum is not sufficient justification for exceeding the criteria and WSDOT would not be the only approving authority on this. Given the complications of this site, I think that this might be an iterative process and it might be good to get all stakeholders together at the table to discuss what the options are. At a minimum, the city would need to prove that they are meeting the WAC and WCDG or have approval from WSDOT, WDFW and likely the Tribes to deviate.
- WSDOT typically designs fish passage structures to meet the WCDG which recommends a minimum freeboard above the 100-year. Freeboard is measured above the streambed material inside the culvert, regardless of embedment depth. The structure should be designed to maintain a bed within the channel under the expected scour conditions.
- 3. This is a NWR staff question

Response to Question #2

4. I believe Rich answered this question below.

Heather Pittman, P.E. Assistant State Hydraulic Engineer WSDOT HQ Hydraulics Office 360.705.7495

From: Zeldenrust, Richard

Sent: Tuesday, November 08, 2016 8:29 AM

- **To:** Wendt, Shawn <WendtS@wsdot.wa.gov>; Pittman, Heather <PittmaH@wsdot.wa.gov>; Cuthbertson, Jim <CuthbeJ@wsdot.wa.gov>; Johnson, Chris J. <JohnsoC@wsdot.wa.gov>
- **Cc:** Chi, John <ChiJ@wsdot.wa.gov>; Heilman, Julie <HeilmaJ@wsdot.wa.gov>; Frye, Mark <FryeM@wsdot.wa.gov>; Bedi, Gary <BediG@wsdot.wa.gov>

Subject: RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Shawn,

I looked over all the attachments, and found the four questions at the end of the Coordination Memo. I can offer the following:

1. This question may be best answered by WSDOT Hydraulics Staff.

From:	Wendt, Shawn
To:	John Featherstone
Cc:	<u>Chi, John</u>
Subject:	Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo
Date:	Thursday, November 17, 2016 10:01:46 AM
Attachments:	Shoreline 25th Ave NE WSDOT coordination memo 2016-11-03.pdf WSDOT Responses to Memo.pdf

John,

Response to Question #3

I have solicited responses from various support groups to answer your questions within the memo. In regards to question #3; There are no long term Plans at this point to repair or replace the existing remaining gabion rock wall. Our Maintenance will most likely monitor this wall in the interim.

I hope this answers the questions in the memo. Let me know if need any additional information.

Thanks,

Shawn Neil Wendt, P.E.

Transportation Engineer 3 – Design Team Leader

Schedule: M-TH 8:00 AM- 5:30 PM

Alt Friday 8:00 AM - 4:30 PM

Office Phone: (206) 440-4614

WSDOT, NW Region

wendts@wsdot.wa.gov

Appendix K.5 City Cost Estimate of Ballinger Way NE Gabion Wall Replacement

Note that the cost estimate for replacing the existing failing gabion wall along Ballinger Way NE was prepared by ABAM/Louis Berger for the City of Shoreline at the request of WSDOT. The cost estimate assumes a standalone project not related to other creek improvements.

Table 1. Planning Level Design, Permitting, and Construction Cost Estimate for WSDOT Ballinger Way Wall							
Spec	Rid Ham Deparimtion	Ouromtitus	l linit		Amount	A commission of Masters	
Section	Bid item Description	Quantity	Unit	Unit Cost	Amount	Assumptions/Notes	
1	MOBILIZATION (10%)	1	LS	\$158,000	\$158,000		
2	PROJECT TEMPORARY TRAFFIC CONTROL (5%)	1	LS	\$58,000	\$58,000		
3	SURVEYING	1	LS	\$20,000	\$10,000		
4	SPCC PLAN	1	LS	\$5,000	\$5,000		
5	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000		
6	REMOVAL OF STRUCTURE AND OBSTRUCTION	1	LS	\$5,000	\$5,000		
7	REMOVING SOLDIER PILE SHAFT OBSTRUCTIONS	1	LS	\$32,300	\$32,300		
8	SHAFT-30 IN DIAMETER	1290	LF	\$250	\$322,500		
9	FURNISHINGS SOLDER PILE W12X190	1290	LF	\$175	\$225,750		
10	LAGGING	4200	SF	\$75	\$315,000		
11	GUARDRAIL	330	LF	\$30	\$9,900		
12	CHAIN LINK FENCE TYPE 6	280	LF	\$33	\$9,240		
13	GABION EXCAVATION INCL. HAUL	610	CY	\$60	\$36,600		
14	STRUCTURE EXCAVATION CLASS A INCL. HAUL	780	CY	\$35	\$27,300		
15	CHANNEL EXCAVATION	232	CY	\$25	\$5,797		
16	EMBANKMENT COMPACTION	73	CY	\$4	\$293		
17	STREAMBED SEDIMENT	229	TN	\$40	\$9,158		
18	PSIPE - 1 GAL PLANTS - RIPARIAN PLANTINGS	618	EA	\$10.00	\$6,180		
19	TOPSOIL	317	CY	\$50.00	\$15,864		
20	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$20,000	\$20,000		
21	LARGE WOODY DEBRIS	7	EA	\$1,200	\$7,827		
22	EARTH ANCHORS	13	EA	\$800	\$10,437		
23	HABITAT BOULDERS	13	TN	\$85	\$1,063		
24	EROSION/WATER POLLUTION CONTROL	1	LS	\$45,000	\$45,000		
25	TEMPORARY STREAM ACCESS ROAD	185	TN	\$35	\$6.475		
26	DEWATERING	1	LS	\$20,000	\$20,000		
27	RECORD DRAWINGS	1	LS	\$5.000	\$5.000		
SUBTOTAL	CONSTRUCTION COST			. ,	\$1 372 684		
CONSTRUCTION CONTINGENCY				30%	\$411.805		
TOTAL CONSTRUCTION COST WITH CONTINGENCY					\$1 785 000		
SALES TAX				9.5%	\$169.580		
TOTAL CONSTRUCTION COST WITH TAX				0.070	\$1,954,600		
OTHER APPROXIMATED PROJECT COSTS							
ADMINISTRATIVE COSTS				10%	\$196,000		
DESIGN AND PERMITTING				15%	\$293,190		
CONSTRUCTION MANAGEMENT/CONSTRUCTION ADMINISTRATION				15%	\$294,000		
TEMPORARY EASEMENT					\$5,000		
SPECIAL T	ESTING AND INSPECTIONS			2%	\$40,000		
					• • • • • •		
TOTAL CONSTRUCTION COST \$2,783,000							
					· · ·		

Cost Estimate Assumptions:

1. Wall would tie into the recently repaired wall at NE 195th St. and extend approximately 330 feet to the South.

2. Wall construction would be similar type wall as NE 195th St. repair. The bid results for the WSDOT wall repair was reviewed to help develop estimates for unit costs.

3. It is assumed that the wall would be installed behind the existing gabion wall and the existing gabion wall would be removed.

4. It was assumed this would be a "stand-alone" project for the wall replacement, but because it would affect the creek would require permits and creek restoration, which was assumed to be part of the project.

5. The cost estimate includes a 30% construction contingency and soft costs (administration, design and permitting, construction management, and special testing and inspections).

6. The estimate includes a bid item break down similar to the alternative cost estimates for the 25th Ave. NE Flood Reduction Project.

7. The estimate does not include the assumption of lowering the creek profile south of 195th Street NE (which ultimately would be necessary when the 195th Street NE culvert is replaced).

From:	Trowbridge, Amity
To:	John Featherstone
Subject:	RE: [EXTERNAL] Shoreline 25th Ave NE Flood Reduction Project
Date:	Thursday, November 02, 2017 5:09:15 PM

Thanks John. Sounds like the segment adjacent to SR 104 with the wall will likely be constructed sometime after 2023. This is good news from the perspective that we'll have plenty of time to coordinate should WSDOT fund the wall replacement. I've sent an inquiry to our HQ programming office regarding when the wall might receive funding and will contact you when I get a response.

Thanks,

Amity Trowbridge, P.E. WSDOT NWR Program Development Tue – Fri, 7:00 AM – 5:30 PM 206.440.4749

From: John Featherstone [mailto:jfeatherstone@shorelinewa.gov]
Sent: Monday, October 30, 2017 2:34 PM
To: Trowbridge, Amity <AmityT@wsdot.wa.gov>
Cc: Crawford, John P. (NW Region) <CrawfJP@wsdot.wa.gov>; Wendt, Shawn
<WendtS@wsdot.wa.gov>
Subject: RE: [EXTERNAL] Shoreline 25th Ave NE Flood Reduction Project

Hi Amity,

The City of Shoreline's plan is to phase construction of the 25th Ave NE Flood Reduction project. Currently, construction of floodplain storage within an upstream portion of the site (at the City's North Maintenance Facility Site just south of Brugger's Bog Park) is tentatively scheduled for 2023. We don't currently have a near-term construction schedule for any downstream areas (including NE 195th St culvert replacement and channel deepening along the base of the SR-104 gabion wall). The culvert at this location belongs to the City of Lake Forest Park and Shoreline wants to further determine source of funding and lead party for replacement of this culvert. If WSDOT is potentially interested in a combined construction effort, that could help to move things along and would certainly be useful context for discussions with Lake Forest Park.

Let me know if you'd like to talk over any of these topics.

Thanks,

John Featherstone, P.E. Surface Water Engineer City of Shoreline Desk: 206 801 2478 Cell: 206 681 6443

"Supporting a sustainable and vibrant community through stewardship of our public infrastructure

and natural environment." - City of Shoreline Public Works Mission

From: Trowbridge, Amity [mailto:AmityT@wsdot.wa.gov]
Sent: Friday, October 20, 2017 3:40 PM
To: John Featherstone <<u>ifeatherstone@shorelinewa.gov</u>>
Cc: Crawford, John P. (NW Region) <<u>CrawfJP@wsdot.wa.gov</u>>; Wendt, Shawn
<<u>WendtS@wsdot.wa.gov</u>>
Subject: [EXTERNAL] Shoreline 25th Ave NE Flood Reduction Project

John – My office is developing a scoping level estimate for the replacement of the remaining gabion wall on State Route 104 in the vicinity of your flood reduction project. As noted in email correspondence with Shawn Wendt, WSDOT doesn't have a project programmed for the wall replacement, but your project might be an opportunity to coordinate construction efforts should the gabion wall replacement be programmed in the near future. Your project webpage indicated having 60% design by the end of 2018 – but doesn't have any other proposed schedule information.

When is Shoreline hoping to advertise for construction bids on the 25th Ave NE Flood Reduction project? Do you have construction funding secured?

Thanks for your help!

Thawks, **Amity Trowbridge, P.E.** Washington State Department of Transportation NWR Program Development Tue – Fri, 7:00 AM – 5:30 PM 206.440.4749 - <u>amityt@wsdot.wa.gov</u> John,

Our HQ would like to know the replacement cost so they can make an informed decision. Let me know if you are able to provide the cost estimate for the wall replacement work.

Thanks,

John Chi. JE WSDOT Project Engineer

(206) 440-4612

From: John Featherstone [mailto:jfeatherstone@shorelinewa.gov]
Sent: Monday, June 19, 2017 11:24 AM
To: Chi, John <ChiJ@wsdot.wa.gov>
Cc: Wendt, Shawn <WendtS@wsdot.wa.gov>
Subject: RE: [EXTERNAL] RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Hi John,

We have not estimated any costs for wall repair. The concepts we've developed to date generally moved the creek as far from the base of the wall as feasible to attempt to minimize any impacts to the wall.

Thanks,

John Featherstone, P.E. Surface Water Engineer City of Shoreline Desk: 206 801 2478 Cell: 206 681 6443

"Supporting a sustainable and vibrant community through stewardship of our public infrastructure and natural environment."

- City of Shoreline Public Works Mission

Sent: Monday, June 19, 2017 6:23 AM
To: John Featherstone
Cc: Wendt, Shawn
Subject: [EXTERNAL] RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

John,

Do you know the estimated cost for the wall repair work?

Thanks,

John Chi, PE

WSDOT Project Engineer (206) 440-4612

From: Chi, John
Sent: Thursday, June 15, 2017 9:52 AM
To: 'John Featherstone' <<u>ifeatherstone@shorelinewa.gov</u>>
Cc: Wendt, Shawn <<u>WendtS@wsdot.wa.gov</u>>
Subject: RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Hi John,

We do not have this wall programmed for replacement. We are in discussion with our HQ to see potential future replacement but we would not expect to see funding anytime soon.

Thanks,

John Chi, PE WSDOT Project Engineer (206) 440-4612

From: John Featherstone [mailto:jfeatherstone@shorelinewa.gov]
Sent: Tuesday, May 30, 2017 11:50 AM
To: Wendt, Shawn <<u>WendtS@wsdot.wa.gov</u>>
Cc: Chi, John <<u>ChiJ@wsdot.wa.gov</u>>
Subject: RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Hi Shawn,

I hope you're doing well. I was hoping to pick up a thread from this previous coordination to pursue a little further, as it has recently become more relevant with the City of Shoreline looking to wrap up pre-design with a recommended concept and implementation plan for the 25th Ave NE Flood Reduction project. I know you may have to forward this request, but since you were the best point of contact for me to date I figured it would make sense to start with you.

So, going back to November, one of WSDOT's structural reviewers, Richard Zeldenrust, responding to the City's question #4 related to requested protection for the remaining compromised gabion retaining wall south of NE 195th St and parallel to SR-104, wrote the following (excerpted):

Total wall replacement could solve both problems. Perhaps a cantilevered sheet pile wall or cantilevered soldier pile wall could be installed immediately behind the existing gabion wall, containing the existing fill and allowing the gabion wall to be removed from the front side (stream side). A new wall, extended deeply enough, would alleviate any scour concerns, would allow removal of the failing gabion baskets, and would provide additional space for routing of the stream.

The City of Shoreline understands (as noted in WSDOT's response to question #3) that there are currently no WSDOT plans to repair or replace this wall, although it has been acknowledged that the existing wall is in poor condition, with existing gabion baskets beginning to fail due to corrosion and rock spilling out of the baskets and into the creek. At the City we would like to know if WSDOT would be willing to consider allowing the City of Shoreline and/or City of Lake Forest Park to lead efforts to repair this wall, as part of the scope of improvements related to the 25th Ave NE Flood Reduction Project, under the condition that WSDOT provide all necessary funding for the portion of work related to the wall repair. If this arrangement is possible, how would it be pursued?

Let me know if you have any questions.

Thanks,

John Featherstone, P.E. Surface Water Engineer City of Shoreline Desk: 206 801 2478 Cell: 206 681 6443

"Supporting a sustainable and vibrant community through stewardship of our public infrastructure and natural environment."

- City of Shoreline Public Works Mission

From: John Featherstone
Sent: Thursday, November 17, 2016 11:19 AM
To: 'Wendt, Shawn'
Cc: Chi, John
Subject: RE: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

Hi Shawn,

Thanks, this looks like a good first response. I have forwarded to the City's 25th Ave NE project consultant and will let you know if we have any follow-up questions.

Thanks again,

John Featherstone, P.E. Surface Water Engineer City of Shoreline Desk: 206 801 2478 Cell: 206 681 6443

"Working together, protecting our resources, making a difference" - City of Shoreline Public Works Mission

From: Wendt, Shawn [mailto:WendtS@wsdot.wa.gov]
Sent: Thursday, November 17, 2016 10:02 AM
To: John Featherstone
Cc: Chi, John
Subject: Shoreline 25th Ave NE Flood Reduction Project - WSDOT coordination memo

John,

I have solicited responses from various support groups to answer your questions within the memo. In regards to question #3; There are no long term Plans at this point to repair or replace the existing remaining gabion rock wall. Our Maintenance will most likely monitor this wall in the interim.

I hope this answers the questions in the memo. Let me know if need any additional information.

Thanks,

Shawn Neil Wendt, P.E. Transportation Engineer 3 – Design Team Leader Schedule: M-TH 8:00 AM- 5:30 PM Alt Friday 8:00 AM - 4:30 PM Office Phone: (206) 440-4614 WSDOT, NW Region wendts@wsdot.wa.gov
Appendix L Preliminary Alternative Evaluation

City of Shoreline 25th Avenue NE Flood Reduction Project Subject: Preliminary Alternative Options Matrix Date: 06-01-2016

identifies a wide range of potential options in four broad categories; conveyance options for 25th Avenue NE, conveyance options for NE 195th Street, storage options (to either mitigation for the lost of storage or to provide sufficient storage so as to reduce floading),

		Initial Qualitative Assessment and Screening									
	Upper 25th Avenue NE (Between Bruggers Bog Park and NE 195th Place) Note: Upper 25th Ave NE options need to be combined with a Lower 25th Ave NE option	General Considerations	Flood reduction potential	Property acquisition or easement needed	Likely permitting difficulty	Utility Conflicts	Fish/ Habitat benefit	Street parking impact (perm)	Maint need/risk	Cost	Rationale if Removed from Futher Consideration
1	WEST SIDE of 25th Ave NE (north of NE 195th PI)	General: Avoids major utility impacts on east side, but no out-of-ROW alignment option									
	A West side - Daylighted within ROW within ex shoulder Includes: 60 LF culvert across NMF driveway, 260 LF open channel, 75 LF culvert (fish passable culverts)	May not be enough room for stable side slopes for the daylighted creek. Might need to use walls. Not ideal for fish passage and habitat. North Maintenance Facility plan shows planned parking in the ROW on the west side.	HIGH	NO	MEDIUM	LOW	MEDIUM	MEDIUM	MEDIUM	HIGH	
	B West side - Daylighted within ROW within shoulder widened by shifting roadway to the east Includes: 60 Le cluvert across NMF driveway, 260 LF open channel, 75 LF culvert (fish passable culverts)	Likely loss of major reduction of on-street parking on both sides: west side dedicated to daylighted creek and east side park may be lost to shifted roadway. Wauld increase width (possibly up to 8') for the channel cross section but may not be enough to eliminate the need for a wall.	HIGH	NO	MEDIUM	LOW	MEDIUM	нідн	MEDIUM	HIGH	
	C West side - Daylighted beyond ROW (onto NMF property) Includes: 60 LF culvert across NMF driveway, 260+ LF meadnering open channel, 75 LF culvert (fish passable culverts)	Infeasible - All of NMF property needed for NMF facility, HOWEVER if somehow feasible: Best option to provide a natural channel cross section for the daylighted creek. Lower utility conflicts than other east side options due to alignment being autside of right-of-way. No easement or property acquisition necessary	HIGH	NO	LOW	LOW	HIGH	LOW	LOW	HIGH	*LIKELY* Infeasible - All of NMF property is currently reserved for NMF facility; however, there is a remote chance that a radiacl overhaul in NMF plan could make some portion of the site available for daylighting
	D West side - Continuous box culvert below existing shoulder Includes: 60 LF culvert across NMF driveway, 260 LF culvert parallel to 25th Ave NE, 75 LF culvert (fish passable culverts)	WDFW discourges pipe lengths greater than 10XBankfull Width. WDFW requires that the width be increased further to accommodate geomorphological features, increasing the hydraulic radius by increasing the width by 30% over the typical fish passage width or using a bridge. This will increase the cost of this option.	HIGH	NO	HIGH	LOW	LOW	LOW	HIGH	HIGH	
2	FACT SIDE of 35th Ave NE (north of NE 105th DI)	Consult Part and of POW alignment antion, but waiss utility impacts									
2	EAST SIDE OF 25th AVE NC (north of NC 195th PI) A East side - Douglighted within ROW within ex shoulder Includes: 75 LF culvert across 25th Ave NE, 300 LF open channel, 50 LF culvert across NE 195th PI (fish passable culverts)	General: Best Out-OF-KOW alignment option, but major utility impacts May not be enough room for stable side slopes for the daylighted creek. Might need to use walls. Not ideal for fish passage and habitat. Loss of parking on east side of 25th Ave NE, mostly used by commercial truckers, some use by others. Likely major utility conflicts with water, communications, utility poles.	HIGH	NO	MEDIUM	HIGH	MEDIUM	MEDIUM	MEDIUM	нідн	Comment - Could make argument to not consider further because this alternative has many more utility conflicts than 1A (if don't need extra culvert)
	B East side - Daylighted within ROW within shoulder widened by shifting roadway alignment to west Includes: 52 IF culvert across 25th Ave NE, 300 LF open channel, 50 LF culvert across NE 195th PI (fish passable culverts)	Likely loss of major reduction of on-street parking on both sides: east side dedicated to daylighted creek and west side parking may be lost to shifted raadway. Wauld increase width (possibly up to 8%) for the channel cross section but may not be enough to eliminate the need for a wall. Likely major utility conflicts with water, communications, utility poles.	HIGH	NO	MEDIUM	HIGH	MEDIUM	HIGH	MEDIUM	HIGH	Infeasible - this option would have major utility conflicts compared to similar west side option.
	C East side - Daylighted beyond ROW (onto Alderwood Annex property) Includes: 75 LF culvert across 25th Ave NF, 325 LF meadnering open channel, 50 LF culvert across NE 195th PI (fish passable culverts)	Best option to provide a natural channel cross section for the daylighted creek. Lower level of utility conflicts than other east side options due to alignment being outside of right-of-way. Depends entirely upon easement or property acquisition from Shoreline School District	HIGH	YES	LOW	MEDIUM	HIGH	LOW	LOW	HIGH	
	D East side - Continuous box culvert below existing shoulder Includes: 75 LF culvert across 25th Ave NE, 350 LF culvert running down east side of 25th and across NE 195th Pl	WDFW discourges pipe lengths greater than 10XBankfull Width. WDFW requires that the width be increased further to accommodate geomorphological features, increasing the hydraulic radius by increasing the width by 30% over the typical fish passage width or using a bridge. This will increase the cost of this option. Likely major utility conflicts.	HIGH	NO	HIGH	HIGH	LOW	LOW	HIGH	HIGH	Infeasible - this option would have major utility conflicts compared to similar west side option.
	Lower 25th Avenue NE (Between NE 195th Place and NE 195th Street) Note: Lower 25th Ave NE options need to be combined with an Upper 25th Ave NE option	General: All Lower 25th Ave NE options will likely require improvements to existing open channel segment crossing southwest corner of 2518 NE 195th St									Rationale if Removed from Futher Consideration
3	WEST SIDE of 25th Ave NE (south of NE 195th PI)	General: Avoids major utility and parking impacts on east side, no daylight option									
	A West side - Daylighted within ROW Includes: 200 LF open channel, 60 LF culvert crossing 25th Ave NE to existing open channel	Conflicts with existing sidewalk, roadway, and large apartment building located close to ROW boundary	HIGH	ΝΟ	MEDIUM	LOW	MEDIUM	LOW	MEDIUM	HIGH	Infeasible - this option would require permanent removal of existing sidewalk
	B West side - Daylighted beyond ROW	Conflict with large apartment building located close to ROW bounadry	HIGH	YES	LOW	LOW	HIGH	LOW	LOW	HIGH	Infeasible - this option would require purchase and removal of large apartment building
	C West side - Continuous box culvert Includes: 200 LF culvert parallel to 25th Ave NE, 60 LF culvert crossing 25th Ave NE to existing open channel	Work would requirement removal and replacement of newer sidewalk and excavation work close to foundation of newer large apartment building at 19500. WDFW discourges pipe lengths greater than 10XBankfull Width. WDFW requires that the width be increased further to accommodate geomorphological features, increasing the hydraulic radius by increasing the width by 30% over the typical fish passage width or using a bridge. This will increase the cost of this option.	HIGH	NO	HIGH	LOW	LÓW	LOW	HIGH	HIGH	
4	EAST SIDE of 25th Ave NE (south of NE 195th PI)	General: Follows most closely existing stream conveyance alignment									
ŀ	A East side - Daylighted within ROW Includes: 115 LF open channel parallel to 25th Ave NE, 60 LF culvert crossing driveway for 2518 complex	May not be enough room for stable side slopes for the daylighted creek. Might need to use walls. Not ideal for fish passage and habitat. Total loss of parking on east side of 25th Ave NE, currently used by residents. Likely major utility conflicts with water, communications, utility poles.	HIGH	NO	MEDIUM	нібн	MEDIUM	ніGH	MEDIUM	HIGH	

	B East side - Daylighted beyond ROW Includes: 115+ LF open channel meandering parallel to 25th Ave NE, 60 LF culvert crossing 2518 complex driveway or parking	Best option to provide a natural channel cross section for the daylighted creek; could also provide floadplain storage potential due to need to acquire whole parcel. Lower level of utility conflicts than other east side aptions due to alignment being outside of right-of-way. Depends entirely upon property acquisition of 2500 NE 195th PI fourplex (>\$700k cost)	HIGH	YES	LOW	MEDIUM	HIGH	LOW	LOW	HIGH	Infeasible - this option would require purchase and removal of fourplex building
	C East side - Continuous box culvert Includes: 175 LF culvert parallel to 25th Ave NE, below parking area and crossing driveway for 2518 complex	WDFW discourges pipe lengths greater than 10XBankfull Width. WDFW requires that the width be increased further to accommodate geomorphological features, increasing the hydraulic radius by increasing the width by 30% over the typical fish passage width or using a bridge. This will increase the cost of this option.Likely major utility conflicts with water, communications, utility poles.	HIGH	NO	HIGH	HIGH	LOW	LOW	HIGH	HIGH	
	25th Avenue NE - full length options (Between Brugger's Bog Park and NE 195th Street) All 25th Ave NE Full Length options would be done in lieu of any of the Upper and Lower 25th Ave NE options	General:									Rationale if Removed from Futher Consideration
5	Install high-flow bypass (likely along west side of 25th Ave NE to minimize utility impacts); existing system to remain	WDFW requires a fish screen for highflow bypass. Fish screens can be prohibitively expensive. Fish screens require fine mesh to exclude fish which results in a very large structure. It would be difficult to fit a large fish screen into a site. Fish screens can get clogged with debris easilty and become a maintenance issue or render the highflow bypass blocked during big events. Could use a self-cleaning screen like used in irrigation. Need to consult with WDFW to determine if the fish screen requirement might be waved if above OHW, or waived if significant off-site habitat mitgation is provided. Even it approved, this option may be technically challenging because the existing system is so shallow.	HIGH	NO	HIGH	LOW	LOW	LOW	нібн	MEDIUM	Infeasible - this option would be difficult to permit. In future, when City needs to replace culvert system, fish passage likely required at that time. A large fish screen is undesirable. Also, would need to get similar buy in from agencies as 6A, so 6A would be considered better option.
6	A Upsize existing pipes with non-fish passable pipe sizes sized only for conveyance and seek permit approvals using significant off-site habitat mitigation. This could also include other elements to increase the flooding LOP (such as Interim Solutions 2 and 5).	May not eliminate as much storage as replacing the culverts with fish-passable culverts and therefore may not need to add as much flood storage to compensate. Need to consult with WDFW to determine if this option would be permittable.	MEDIUM	NO	HIGH	MEDIUM	LOW	LOW	MEDIUM	MEDIUM	
6	B Line existing pipes (would presumably lengthen pipe lifespan and slightly increase capacity due to increased smoothness) and seek permit approvals using significant off-site habitat mitigation. This would require other elements to increase the flooding LOP (such as interim Solutions 2 and 5).	May not eliminate as much storage as replacing the culverts with fish-passable culverts and therefore may not need to add as much flood storage to compensate. Need to consult with WDFW to determine if this option would be permittable.	LOW	ΝΟ	HIGH	LOW	LOW	LOW	MEDIUM	LOW	This option is viable for consideration only if (1) it is allowable by permitting, and (2) implementation of other improvements would be sufficient to dramatically reduce flooding
7	Do Nothing Alternative	Flooding would continue. Flooding would include the sole access to the new City NFM, and there could be negative perception if new NMF subject to recurrent flooding. In future, whenever culvert needs to be replaced due to failing condition, the City would be presented with the same costly requirements for providing fish passage at that time. This flooding problem is considered one of the worst, if not worst, flooding problems in the City.	LOW	NO	LOW	LOW	LOW	LOW	HIGH	LOW	Option is not considered desirable because (1) eventually the City will need to consider replacing of this system and meeting costly fish passage requirements, and (2) if this is the case, its better to proceed earlier than later to reduce flood hazards to private properties, Z5th, and the NFM.

		Initial Qualitative Assessment and Screening									
	Conveyance Options NE 195th Street	Considerations									Rationale if Removed from Futher
8	Replace with fish passable culvert	Easily permittable. Good for for fish passage.	HIGH	NO	LOW	HIGH	HIGH	LOW	LOW	HIGH	
9	Buy-out flooding property	High water levels upstream of NE 195th Street impact flooding at 25th Avenue NE. This option would not eliminate the high water levels and therefore may severely limit the improvements that can be made at 25th Avenue NE. Note the assessed values of 2518 and 2500 are \$2.2 million and \$690,000, repsectively). Would require re-locating residents.		YES	LOW	HIGH	LOW	LOW	LOW		Because this option would not help alleviate flooding upstream along 25th Ave NE, this option will not be further considered.
10	Line the existing culvert, potentially in combination with floodwall improvements and signficant habitat mitigation in order to obtain permits.	May not eliminate as much storage as replacing the culverts with fish-passable culverts and therefore may not need to add as much flood storage to mitigate for increased downstream flows. High water levels upstream of NE 195th Street impact flooding at 25th Avenue NE. It is not clear at this point how much flood reduction benefit this option would have on 25th Avenue NE. Existing culvert is set below the downstream grade. Cleaning out and sliplining the culvert would improve the capacity, but it is likely that it would fill up with sediment again and be a maintenance issue. Would need to consult with WDFW to determine if this is permitable.	LOW	ΝΟ	нібн	LOW	LOW	LOW	MEDIUM	LOW	This option is viable for consideration only if (1) it is allowable by permitting, and (2) implementation of other improvements would be sufficient to dramatically reduce flooding
11	Flood proofing structures (such as raising buildings) (culvert would remain LFP'S).	High water levels upstream of NE 195th Street impact flooding at 25th Avenue NE. This option would most likely prevent the flooding at 25th Avenue NE from being solved. Flooding of parking areas (including parked cars) would remain. Ultimately in future when culvert is replaced due to failure (in this case by LFP), the cost spent on flood proofing would have not been needed. Would not need a HPA		YES	LOW	LOW	LOW	LOW	нібн	MEDIUM	Because this option would not help alleviate flooding upstream along 25th Ave NE, this option will not be further considered. Property acquisition not necessary, but would represent a significant investment of public funds on private property.
12	Add a high flow bypass (could potentially be configured above OHW?)	WDFW requires a fish screen for highflow bypass. Fish screens can be prohibitively expensive and large with fine mesh. Typically hard to fit a large fish screen into a site. Tend to get clogged with debris and become a maintenance issue or render the highflow bypass blocked during big events. Need to consult with WDFW to determine if the fish screen requirement might be waved if above OHW, or waived if signficant off-site habitat mitigation is provided	MEDIUM	NO	HIGH	LOW	LOW	LOW	HIGH	MEDIUM	
13	Do Nothing Alternative	Flooding would continue. Even with improvements to the 25th system, flooding would include the sole access to the new City NMF, and there could be negative perception if new NMF subject to recurrent flooding. In future, whenever culvert needs to be replaced due to failing condition, the City would be presented with the same costly requirements for providing fish passage at that time. This flooding problem is considered one of the worst, if not worst, flooding problems in the City.		NO	LOW	LOW	LOW	LOW	HIGH	LOW	Option is not considered desirable. see discussion under 25th Ave NE No Action Option.

		Initial Qualitative Assessment and Screening									
											Rationale if Removed from Futher
	Storage Options	Considerations									Consideration
14	Brugger's Bog Southeast Floodplain Storage (using southeast portion	Site is steeply sloped. May not be enough area to fully mitigate the loss of flood storage. Would need to	MEDIUM	NO	MEDIUM	LOW	HIGH	LOW	LOW	MEDIUM	
	of bog)	replace and mitigate for loss of 0.23 acre Type II wetland , although with expansion of flood storage, it may									
		be self mitigating.									
15	Brugger's Bog Northwest Floodplain Storage (using northwest portion	Site is steeply sloped. May not be enough area to fully mitigate the loss of flood storage.	MEDIUM??	NO	LOW????	LOW	MEDIUM	LOW	LOW	MEDIUM	
	of bog)		??								
		This location may be within the BPA corridor where open water is discouraged.									
16	Shoreline School District 412 Property	General: Option requires acquiring an easement/property.									
	A Floodplain storage (open natural floodplain with habitiat	Baseball field adjacent to where the daylighted creek would be is less sloped than other flood storage sites.	MEDIUM		LOW	LOW	HIGH	LOW	LOW		
	features/planting)										
		Requires easement/property acquisition.									
	B Underground vault (allowing for above use such as playfield)	Expensive and less environmentally desirable than using floodplain storage.	MEDIUM	YES	IOW	IOW	MEDIUM??	IOW	IOW	HIGH	
							?				
		Allows improvements, such as recreational fields or payed parkina, to be constructed above the vault.					i i				
		· · · · · · · · · · · · · · · · · · ·									
17	Rallinger Open Space Area	General: 2.6 acro City owned property: no accoment/acquisition required									
1/	A Site execution and rearrading and add floodwall along NE 200th St to	Site is steaply sloped. May not be apough area to fully mitigate the loss of flood storage. Adding a flood wall		NO	1014/2222	1014	MEDILINA	LOW	LOW	MEDILIAA	
	increase storage	site is steepiy sloped. Way not be enough area to faily initigate the loss of flood storage. Adding a flood wan	22	NO	LOWFIE	1000	WEDIOW	2000	2000	WEDIOW	
	nicreuse storuge.	foruse on the parth partial of site	11								
	B Site excavation and regrading and raise NF 200th to increase storage	Site is steen vision bordin of site.	MEDIUM??	NO	10W2222	IOW	MEDIUM	IOW	IOW	MEDIUM	
		will help increase storage volume.	??								
18	Half-Time III LLC property (just u/s of Ballinger Way at 2609 NE 195TH	May not be enough area to fully mitigated the loss of flood storage.									Option is not considered viable. Based on
	ST 98155)										H/H modeling, this area already provides
	· · · · · ,	Site may contain wetland, which may make permitting more complicated.									significant storage and is subject to flooding.
											Also, in future when downstream culvert is
		Requires easement/property acquisition. Note this would be in Lake Forest Park.									replaced, likley needs to be fish passable.
											,
1.1											1

		Initial Qualitative Assessment and Screening									
	Basin-wide	Considerations									Rationale if Removed from Futher
19	Apply green streets to the tributary basin	A significant portion of the basin would need to be converted to green streets to have a significant impact on the site. This could take a long time to implement. A large portion of the basin is within Mountlake Terrace. Would need to obtain an agreement with Mountlake Terrace to convert to green streets.									Likely not feasible as a primary solution because much of the basin is in Mountlake Terrace and a fairly large portion of the remaining area in Shoreline is very highly developed.
20	Retrofit tributary basin with UIC (underground injection to infiltration wells/trenches)	Need to consult with a geotech to determine if UIC is an realistic option in this basin. All infiltrated stormwater would need pre-treatment using Ecology standards. This would likely be prohibitively expense for retroft situations.									Not considered a viable option due to unknown benefit and likely cost prohibitive pre-treatement required.
21	Upstream diversion with regional detention at Shoreline School District Property	Need further study to determine if this would provide enough relief to mitigate for the flooding. Requires easement/property acquisition.	MEDIUM		LOW	LOW	MEDIUM?? ?	LOW	LOW	HIGH	
22	Buyouts and provide storage in upper piped portion of basin (avoiding signficant permitting) (such as trailer park at NW corner of 54th Ave W and NE 205th St).	Property within Mountlake Terrace. Would require cooperation of MLT to proceed. Would require relocating residents. Not clear whether this would provide enough detention to mitigate the flooding at the project site.	MEDIUM	YES	LOW	LOW	MEDIUM?? ?	LOW	LOW	HIGH	Not considered as further option due to uncertainty of benefits and difficulty of potential execution due to location being outside of City and County jurisdiction. Potential for coordiation with MLT on future projects.
23	Downstream culvert replacement (to avoid flood storage mitigation)	Would need to assess downstream flow impacts in Lake Forest Park. There are six culverts on Ballinger Creek and if the increase in downstream flow continues into Lyons Creek, there are an additional nine culver crossing. Upsizing one (if the increase in flow causes floading) has the potential to further increase downstream flows/floading which may result in a domino effect. Also, increased downstream flows may adversely impact the stream channel. The Lake Forest Park Fload Reduction Study (Otak) notes reaches with stability problems on Lyon Creek downstream of the project. However, the study did not study Ballinger Creek.									Likely not feasible due to costs and likely negative impacts of inceasing downstream flows.
24	Regional detention in the northwest corner of Brugger's Bog.	A large commercial basin enters Ballinger Creek at this location (about 55 acres). This would be a good location to detain and treat flow entering the creek. Not clear if this would mitigate for the flooding at 25th Avenue NE. This location is in the BPA easement. Generally, BPA doesn't permit facilities within the easement.	MEDIUM?? ??	NO	LOW????	LOW	MEDIUM	LOW	LOW	MEDIUM	(need to clarify difference between this alternative and Alt #15 - Floodplain storage vs. inline detention??)
25	High flow bypass for Ballinger Way storm system	This would convey a large (25%) portion of the basin impervious area to a location downstream of NE 195th Street An issue would be potential increases in downstream flows, which would likely require mitigation storage. Another consideration is that if the City has to replace the 25th system in the future due to failure, the City would still need to meet the costly fish passage. Thus, this may not be considere viable, unless WDFW/agencies agree to not requireing fish passage in future replacement.	LOW	NO	LOW	MEDIUM	LOW	LOW	LOW	HIGH	Option is not considered viable, based on likilhood of increased downstream peak flows and that fish passage conveyance will likely be required in future.
26	High flow bypass and storage at North Maintenance Facilty	The North Maintenance Facility already lacks area for its own use. No significant area remaining for flood storage in pond arrangement. However, there may potential for underground storage in vault and serving the west portion of the basin if combined with a high flow pipe system extension (e.g. from Ballinger Way just west of 22nd Ave NE an existing 24-inch pipe system could be extended to the NMF and detained in a vault in the west portion of the siste prior to discharge to the existing system. In this location the vault could be deep. One additional consideration is that the storage may be able to serve as the "sites" mitigation for stormwater detention.	MEDIUM?? ??	NO	LOW	LOW	MEDIUM	LOW	LOW	нісн	This option is viable for consideration only if NMF design can accommodate
1											

		Initial Qualitative Assessment and Screening									
	Interim Solutions	Considerations									Rationale if Removed from Futher
27	Clean out culvert at 195th and channel downstream	The culvert appears to be set lower than the downstream channel. Cleaning out the culvert would improve	MEDIUM	NO	LOW	LOW	LOW	LOW	LOW	LOW	
		capacity, but it is likely that it would just get filled in again and continue to be a maintenance issue.									
		Not clear if cleaning the culvert would reduce flooding sufficiently. The Basin Plan model includes a culvert									
		that is completely open at this location and is still showing flooding.									
28	Raise 25th Avenue NE	Raising 25th Avenue NE may be not a good investment if the culvert under the road needs to be replaced in the future and it is replaced with a fish passable culvert. It is likely that a fish passable culvert would lower the upstream water level such that the extra roadway elevation would not be needed to prevent flooding of the roadway.	MEDIUM	ΝΟ	LOW	LOW	LOW	LOW	LOW	MEDIUM	This option is not considered beneficial if fish passage is required .
29	Construction a short wall/berm at 25th Avenue NE	This would be similar to rasing 25th Avenue but the investment would be smaller. May need to use a wall rather than a berm due to the lack of space available.	MEDIUM	NO	LOW	LOW	LOW	LOW	LOW	LOW	
30	Construction a short berm (large speed humps) along 25th Ave NE along all driveways and adjacent to driveways in attempt to keep flood flows contained in ROW.	Potentially could increase LOP for structures. May make flood depths along 25th Ave NE slightly higher.	MEDIUM	NO	LOW	LOW	LOW	LOW	LOW	LOW	

Appendix M Hydraulic Model Output

Appendix M.1 Existing Conditions

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	3833.85	2-Yr	26.33	319.41	320.19	320.12	320.30	0.019303	2.85	11.85	35.40	0.66
Ballinger Creek	3833.85	10-Yr	48.20	319.41	320.36		320.52	0.021093	3.55	18.37	40.44	0.72
Ballinger Creek	3833.85	25-Yr	64.61	319.41	320.46	320.38	320.65	0.022360	3.97	22.51	43.35	0.76
Ballinger Creek	3833.85	100-Yr	98.19	319.41	320.62	320.55	320.88	0.024322	4.66	30.11	48.24	0.82
Ballinger Creek	3597.45	2-Yr	26.33	305.99	306.63	306.63	306.90	0.046186	4.15	6.35	12.13	1.00
Ballinger Creek	3597.45	10-Yr	48.20	305.99	306.90	306.90	307.28	0.039418	4.94	9.89	13.85	0.99
Ballinger Creek	3597.45	25-Yr	64.61	305.99	307.07	307.07	307.52	0.035780	5.38	12.36	14.89	0.97
Ballinger Creek	3597.45	100-Yr	98.19	305.99	307.38	307.38	307.93	0.031360	6.06	17.17	16.83	0.95
Ballinger Creek	3364.13	2-Yr	26.33	286.00	288.60	286.95	288.66	0.001300	2.03	13.00	9.55	0.22
Ballinger Creek	3364.13	10-Yr	48.20	286.00	289.82	287.43	289.92	0.001210	2.53	19.09	11.68	0.23
Ballinger Creek	3364.13	25-Yr	64.61	286.00	290.79	287.73	290.90	0.001020	2.70	23.96	21.33	0.22
Ballinger Creek	3364.13	100-Yr	98.19	286.00	292.41	288.29	292.43	0.000409	1.01	97.38	40.49	0.11
Ballinger Creek	3300		Culvert									
Ballinger Creek	3275.89	2-Yr	26.33	284.00	285.10	285.10	285.66	0.035695	6.00	4.39	18.36	1.01
Ballinger Creek	3275.89	10-Yr	48.20	284.00	285.66	285.66	286.49	0.030800	7.31	6.60	21.30	1.00
Ballinger Creek	3275.89	25-Yr	64.61	284.00	286.01	286.01	287.02	0.028923	8.06	8.02	23.17	1.00
Ballinger Creek	3275.89	100-Yr	98.19	284.00	286.66	286.66	288.00	0.026287	9.26	10.60	26.90	1.00
Ballinger Creek	3090.28	2-Yr	26.33	273.00	273.80		274.02	0.031928	3.76	7.00	9.39	0.77
Ballinger Creek	3090.28	10-Yr	48.20	273.00	274.00	274.00	274.46	0.052246	5.45	8.85	9.73	1.01
Ballinger Creek	3090.28	25-Yr	64.61	273.00	274.21	274.21	274.75	0.050184	5.93	10.90	10.08	1.00
Ballinger Creek	3090.28	100-Yr	98.19	273.00	274.57	274.57	275.26	0.047959	6.68	14.69	10.71	1.01
Ballinger Creek	2831.67	2-Yr	26.33	263.00	263.84	263.84	264.18	0.045929	4.69	5.62	8.34	1.01
Ballinger Creek	2831.67	10-Yr	48.20	263.00	264.25	264.25	264.46	0.020802	4.15	23.55	67.81	0.72
Ballinger Creek	2831.67	25-Yr	64.61	263.00	264.37	264.37	264.59	0.020655	4.45	31.74	70.46	0.73
Ballinger Creek	2831.67	100-Yr	98.19	263.00	264.51	264.51	264.80	0.025665	5.36	41.91	73.69	0.83
Ballinger Creek	2483	2-Yr	26.33	244.00	246.34	244.95	246.42	0.001837	2.25	11.72	16.72	0.26
Ballinger Creek	2483	10-Yr	48.20	244.00	247.71	245.43	247.81	0.001333	2.60	18.54	23.54	0.24
Ballinger Creek	2483	25-Yr	64.61	244.00	249.20	245.73	249.29	0.000777	2.49	25.99	31.97	0.19
Ballinger Creek	2483	100-Yr	98.19	244.00	250.64	246.29	250.65	0.000078	0.74	157.42	59.27	0.06
Ballinger Creek	2400		Culvert									

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	2355.95	2-Yr	26.33	242.00	243.02	243.02	243.54	0.036663	5.76	4.57	27.84	1.01
Ballinger Creek	2355.95	10-Yr	48.20	242.00	243.58	243.53	244.30	0.028577	6.81	7.07	37.64	0.96
Ballinger Creek	2355.95	25-Yr	64.61	242.00	243.86	243.86	244.79	0.029532	7.74	8.35	42.62	1.00
Ballinger Creek	2355.95	100-Yr	98.19	242.00	244.46	244.46	245.69	0.026927	8.90	11.04	53.35	1.00
Ballinger Creek	2314.97	2-Yr	26.33	240.00	242.62	240.84	242.66	0.000431	1.67	15.72	46.06	0.18
Ballinger Creek	2314.97	10-Yr	48.20	240.00	243.85	241.26	243.92	0.000400	2.09	23.10	62.05	0.19
Ballinger Creek	2314.97	25-Yr	64.61	240.00	244.15	241.53	244.16	0.000059	0.73	134.10	67.98	0.07
Ballinger Creek	2314.97	100-Yr	98.19	240.00	244.37	242.03	244.38	0.000106	1.02	149.60	73.67	0.09
Ballinger Creek	2300		Culvert									
Ballinger Creek	2091.38	2-Yr	26.33	235.00	236.11	236.11	236.66	0.022466	5.95	4.42	18.67	1.00
Ballinger Creek	2091.38	10-Yr	48.20	235.00	236.65	236.65	237.48	0.019903	7.31	6.59	35.64	1.00
Ballinger Creek	2091.38	25-Yr	64.61	235.00	237.01	237.01	238.01	0.018449	8.04	8.04	46.52	1.00
Ballinger Creek	2091.38	100-Yr	98.19	235.00	237.66	237.66	238.98	0.016751	9.23	10.64	65.87	1.00
Ballinger Creek	1973.22	2-Yr	26.33	229.00	229.73	229.73	230.07	0.047142	4.70	5.61	8.35	1.01
Ballinger Creek	1973.22	10-Yr	48.20	229.00	230.08	230.08	230.56	0.042907	5.58	8.63	8.99	1.00
Ballinger Creek	1973.22	25-Yr	64.61	229.00	230.30	230.30	230.87	0.040888	6.04	10.70	9.40	1.00
Ballinger Creek	1973.22	100-Yr	98.19	229.00	230.69	230.69	231.41	0.039167	6.78	14.47	42.53	1.00
Ballinger Creek	1793.86	2-Yr	39.36	223.00	224.26		224.42	0.010301	3.21	12.24	12.45	0.57
Ballinger Creek	1793.86	10-Yr	71.45	223.00	224.68		224.93	0.011725	4.01	17.83	14.27	0.63
Ballinger Creek	1793.86	25-Yr	93.25	223.00	224.90		225.21	0.012335	4.40	21.19	15.25	0.66
Ballinger Creek	1793.86	100-Yr	134.32	223.00	225.27		225.65	0.013023	4.97	27.05	16.83	0.69
Ballinger Creek	1740.27	2-Yr	39.36	222.19	223.13	223.13	223.45	0.038340	4.59	9.52	16.64	0.95
Ballinger Creek	1740.27	10-Yr	71.45	222.19	223.44	223.44	223.90	0.035471	5.60	14.91	17.90	0.97
Ballinger Creek	1740.27	25-Yr	93.25	222.19	223.63	223.63	224.16	0.033814	6.10	18.27	18.65	0.97
Ballinger Creek	1740.27	100-Yr	134.32	222.19	223.93	223.93	224.59	0.031855	6.86	24.22	20.85	0.98
Ballinger Creek	1684.22	2-Yr	39.36	219.14	220.73		220.89	0.010102	3.22	12.82	20.37	0.51
Ballinger Creek	1684.22	10-Yr	71.45	219.14	221.07		221.35	0.013474	4.37	19.90	22.25	0.62
Ballinger Creek	1684.22	25-Yr	93.25	219.14	221.25		221.60	0.014961	4.95	24.00	23.26	0.66
Ballinger Creek	1684.22	100-Yr	134.32	219.14	221.52	221.32	222.00	0.017239	5.87	30.71	24.84	0.73
Ballinger Creek	1630.62	2-Yr	39.36	218.87	220.18		220.29	0.011635	2.82	16.69	79.44	0.53
Ballinger Creek	1630.62	10-Yr	71.45	218.87	220.53		220.68	0.010170	3.32	29.11	90.84	0.53

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1630.62	25-Yr	93.25	218.87	220.69	220.36	220.87	0.010649	3.69	35.41	96.03	0.55
Ballinger Creek	1630.62	100-Yr	134.32	218.87	220.93	220.59	221.17	0.011828	4.32	45.42	103.69	0.60
												1
Ballinger Creek	1536.58	2-Yr	39.36	217.43	218.81	218.76	218.89	0.019320	2.49	26.85	100.41	0.63
Ballinger Creek	1536.58	10-Yr	71.45	217.43	218.88	218.88	219.03	0.037080	3.74	32.97	101.06	0.90
Ballinger Creek	1536.58	25-Yr	93.25	217.43	218.93	218.93	219.12	0.040460	4.18	38.77	101.68	0.95
Ballinger Creek	1536.58	100-Yr	134.32	217.43	219.04	219.04	219.26	0.041689	4.72	49.55	102.82	0.99
												I
Ballinger Creek	1518.08*	2-Yr	39.36	216.95	218.20	218.15	218.38	0.037237	3.56	12.14	102.56	0.89
Ballinger Creek	1518.08*	10-Yr	71.45	216.95	218.38	218.21	218.42	0.008321	2.08	61.29	107.21	0.44
Ballinger Creek	1518.08*	25-Yr	93.25	216.95	218.55	218.21	218.58	0.006503	2.11	78.72	110.01	0.40
Ballinger Creek	1518.08*	100-Yr	134.32	216.95	218.82	218.25	218.85	0.004850	2.20	109.31	114.32	0.37
												ļ
Ballinger Creek	1499.59*	2-Yr	39.36	216.48	217.70	217.56	217.85	0.022000	3.16	12.46	26.53	0.70
Ballinger Creek	1499.59*	10-Yr	71.45	216.48	218.19	217.82	218.27	0.007113	2.59	44.67	86.61	0.44
Ballinger Creek	1499.59*	25-Yr	93.25	216.48	218.39	218.05	218.47	0.005487	2.55	62.94	92.11	0.39
Ballinger Creek	1499.59*	100-Yr	134.32	216.48	218.67	218.20	218.76	0.005039	2.79	91.65	120.74	0.39
Ballinger Creek	1481.09*	2-Yr	39.36	216.00	217.58	217.02	217.65	0.005374	2.23	17.75	24.12	0.37
Ballinger Creek	1481.09*	10-Yr	71.45	216.00	218.08	217.32	218.17	0.004214	2.54	40.86	68.60	0.35
Ballinger Creek	1481.09*	25-Yr	93.25	216.00	218.27	217.49	218.37	0.004231	2.75	55.36	79.64	0.36
Ballinger Creek	1481.09*	100-Yr	134.32	216.00	218.56	217.81	218.67	0.004333	3.06	80.02	93.57	0.37
												ļ
Ballinger Creek	1462.60*	2-Yr	39.36	215.53	217.52	216.53	217.58	0.002789	2.04	20.48	25.84	0.28
Ballinger Creek	1462.60*	10-Yr	71.45	215.53	218.02	216.90	218.10	0.002977	2.51	44.20	55.83	0.30
Ballinger Creek	1462.60*	25-Yr	93.25	215.53	218.19	217.12	218.30	0.003512	2.87	54.68	64.10	0.33
Ballinger Creek	1462.60*	100-Yr	134.32	215.53	218.44	217.49	218.58	0.004498	3.47	71.93	77.46	0.38
												<u> </u>
Ballinger Creek	1444.11	2-Yr	39.36	215.05	217.43	216.20	217.52	0.003287	2.44	19.18	26.96	0.29
Ballinger Creek	1444.11	10-Yr	71.45	215.05	217.92	216.71	218.04	0.004011	3.07	41.89	55.42	0.33
Ballinger Creek	1444.11	25-Yr	93.25	215.05	218.07	217.04	218.22	0.004830	3.50	50.96	57.90	0.37
Ballinger Creek	1444.11	100-Yr	134.32	215.05	218.26	217.68	218.47	0.006958	4.38	61.99	63.09	0.44
Ballinger Creek	1425.92*	2-Yr	39.36	214.73	217.40	215.99	217.46	0.001891	2.00	24.04	29.98	0.23
Ballinger Creek	1425.92*	10-Yr	71.45	214.73	217.88	216.46	217.97	0.002434	2.58	48.94	56.62	0.27
Ballinger Creek	1425.92*	25-Yr	93.25	214.73	218.03	216.75	218.15	0.003114	3.02	57.72	60.94	0.31
Ballinger Creek	1425.92*	100-Yr	134.32	214.73	218.19	217.26	218.37	0.004874	3.92	67.88	67.91	0.39
Ballinger Creek	1407.74*	2-Yr	39.36	214.42	217.39	215.82	217.43	0.001194	1.68	29.42	44.50	0.19

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1407.74*	10-Yr	71.45	214.42	217.86	216.26	217.93	0.001587	2.19	57.50	61.43	0.23
Ballinger Creek	1407.74*	25-Yr	93.25	214.42	218.01	216.52	218.09	0.002089	2.60	66.85	67.53	0.27
Ballinger Creek	1407.74*	100-Yr	134.32	214.42	218.15	216.95	218.29	0.003377	3.42	76.96	73.54	0.34
Ballinger Creek	1389.56*	2-Yr	39.36	214.10	217.38	215.67	217.40	0.000778	1.41	39.82	50.32	0.16
Ballinger Creek	1389.56*	10-Yr	71.45	214.10	217.85	216.10	217.90	0.001076	1.87	66.87	64.70	0.19
Ballinger Creek	1389.56*	25-Yr	93.25	214.10	217.99	216.33	218.05	0.001442	2.23	76.38	69.96	0.23
Ballinger Creek	1389.56*	100-Yr	134.32	214.10	218.13	216.72	218.23	0.002405	2.97	85.99	75.05	0.29
Ballinger Creek	1371.38	2-Yr	40.96	213.78	217.37	215.66	217.39	0.000619	1.28	44.56	48.74	0.14
Ballinger Creek	1371.38	10-Yr	71.92	213.78	217.84	216.27	217.88	0.000858	1.70	71.51	64.92	0.17
Ballinger Creek	1371.38	25-Yr	94.46	213.78	217.97	216.66	218.03	0.001275	2.13	80.77	87.52	0.21
Ballinger Creek	1371.38	100-Yr	139.46	213.78	218.07	217.00	218.19	0.002430	3.01	91.31	112.26	0.30
Ballinger Creek	1300		Culvert									
Ballinger Creek	790.39	2-Yr	40.96	206.99	209.01	208.44	209.18	0.008298	3.32	13.68	14.39	0.46
Ballinger Creek	790.39	10-Yr	71.92	206.99	210.59	209.00	210.66	0.001640	2.34	48.01	28.22	0.23
Ballinger Creek	790.39	25-Yr	94.46	206.99	210.71	209.19	210.82	0.002427	2.91	51.45	29.43	0.28
Ballinger Creek	790.39	100-Yr	139.46	206.99	210.89	209.69	211.08	0.004238	3.99	56.88	31.25	0.38
Ballinger Creek	736.73	2-Yr	40.96	206.50	208.90		208.95	0.001945	1.88	25.56	20.53	0.24
Ballinger Creek	736.73	10-Yr	71.92	206.50	210.57		210.60	0.000521	1.50	71.67	35.40	0.14
Ballinger Creek	736.73	25-Yr	94.46	206.50	210.68		210.73	0.000812	1.91	75.62	38.64	0.18
Ballinger Creek	736.73	100-Yr	139.46	206.50	210.83		210.92	0.001544	2.70	81.78	44.60	0.24
Ballinger Creek	686.13	2-Yr	40.96	205.76	208.91		208.92	0.000183	0.77	97.36	72.30	0.08
Ballinger Creek	686.13	10-Yr	71.92	205.76	210.58		210.59	0.000068	0.64	239.39	107.74	0.05
Ballinger Creek	686.13	25-Yr	94.46	205.76	210.70		210.70	0.000107	0.82	252.13	114.63	0.07
Ballinger Creek	686.13	100-Yr	139.46	205.76	210.86		210.88	0.000202	1.16	272.05	125.76	0.09
Ballinger Creek	647.77	2-Yr	40.96	204.59	208.79	206.36	208.89	0.001425	2.58	15.86	41.46	0.23
Ballinger Creek	647.77	10-Yr	71.92	204.59	210.57	207.03	210.58	0.000163	1.00	186.46	174.54	0.08
Ballinger Creek	647.77	25-Yr	94.46	204.59	210.68	207.45	210.70	0.000238	1.23	206.05	182.83	0.09
Ballinger Creek	647.77	100-Yr	139.46	204.59	210.84	208.21	210.86	0.000413	1.65	235.72	196.64	0.13
Ballinger Creek	600		Culvert									
Ballinger Creek	556.47	2-Yr	40.96	204.97	206.40	206.40	206.50	0.008382	2.54	16.36	18.51	0.47

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	556.47	10-Yr	71.92	204.97	206.69	206.40	206.86	0.010407	3.39	21.77	19.24	0.54
Ballinger Creek	556.47	25-Yr	94.46	204.97	206.93	206.45	207.14	0.009577	3.68	27.84	36.04	0.54
Ballinger Creek	556.47	100-Yr	139.46	204.97	207.41	206.74	207.61	0.006725	3.74	52.98	60.21	0.47
Ballinger Creek	537.923*	2-Yr	40.96	204.34	205.73	205.69	206.06	0.027025	4.80	10.52	15.76	0.84
Ballinger Creek	537.923*	10-Yr	71.92	204.34	206.18		206.55	0.019821	5.27	18.97	20.05	0.77
Ballinger Creek	537.923*	25-Yr	94.46	204.34	206.43		206.84	0.018441	5.64	24.18	21.35	0.76
Ballinger Creek	537.923*	100-Yr	139.46	204.34	206.87		207.34	0.016553	6.23	34.04	23.33	0.75
Ballinger Creek	519.376*	2-Yr	40.96	203.71	205.34		205.63	0.018371	4.36	10.25	12.34	0.70
Ballinger Creek	519.376*	10-Yr	71.92	203.71	205.91		206.23	0.013233	4.78	20.29	22.45	0.63
Ballinger Creek	519.376*	25-Yr	94.46	203.71	206.18		206.53	0.012631	5.13	26.81	24.93	0.63
Ballinger Creek	519.376*	100-Yr	139.46	203.71	206.67		207.05	0.011216	5.57	39.64	27.75	0.62
Ballinger Creek	500.83	2-Yr	40.96	203.08	205.20		205.36	0.007259	3.28	13.68	11.89	0.45
Ballinger Creek	500.83	10-Yr	71.92	203.08	205.79		206.00	0.006829	3.89	26.51	28.93	0.46
Ballinger Creek	500.83	25-Yr	94.46	203.08	206.07		206.30	0.006955	4.24	34.88	31.37	0.47
Ballinger Creek	500.83	100-Yr	139.46	203.08	206.57		206.83	0.006539	4.64	51.89	35.83	0.47
Ballinger Creek	420.4	2-Yr	40.96	202.45	204.40	203.92	204.63	0.011597	3.94	13.06	15.85	0.54
Ballinger Creek	420.4	10-Yr	71.92	202.45	205.32	204.52	205.49	0.005693	3.70	32.57	29.70	0.41
Ballinger Creek	420.4	25-Yr	94.46	202.45	205.42	204.81	205.68	0.008513	4.64	35.78	34.99	0.50
Ballinger Creek	420.4	100-Yr	139.46	202.45	205.54	205.21	206.03	0.015337	6.42	40.42	41.45	0.68
Ballinger Creek	355.58	2-Yr	40.96	202.31	203.70	203.37	203.85	0.011688	3.34	19.62	38.27	0.52
Ballinger Creek	355.58	10-Yr	71.92	202.31	205.30	203.81	205.32	0.000899	1.60	107.31	100.97	0.17
Ballinger Creek	355.58	25-Yr	94.46	202.31	205.41	203.95	205.44	0.001295	1.96	118.34	111.12	0.20
Ballinger Creek	355.58	100-Yr	139.46	202.31	205.55	204.18	205.60	0.002194	2.64	135.10	124.96	0.26
Ballinger Creek	347.188*	2-Yr	40.96	202.27	203.66		203.76	0.006936	2.61	21.21	44.61	0.42
Ballinger Creek	347.188*	10-Yr	71.92	202.27	205.30		205.32	0.000463	1.20	132.62	116.63	0.13
Ballinger Creek	347.188*	25-Yr	94.46	202.27	205.41		205.43	0.000655	1.47	145.09	121.43	0.15
Ballinger Creek	347.188*	100-Yr	139.46	202.27	205.55		205.58	0.001112	1.97	163.01	129.95	0.20
Ballinger Creek	338.796*	2-Yr	40.96	202.24	203.63		203.70	0.005039	2.15	24.11	51.41	0.36
Ballinger Creek	338.796*	10-Yr	71.92	202.24	205.30		205.31	0.000277	0.94	160.48	128.72	0.10
Ballinger Creek	338.796*	25-Yr	94.46	202.24	205.41		205.42	0.000395	1.15	174.16	132.35	0.12
Ballinger Creek	338.796*	100-Yr	139.46	202.24	205.55		205.57	0.000675	1.55	193.51	138.48	0.16

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	330.405*	2-Yr	40.96	202.21	203.60		203.66	0.004613	1.93	25.49	58.56	0.35
Ballinger Creek	330.405*	10-Yr	71.92	202.21	205.30		205.31	0.000187	0.77	188.56	140.11	0.08
Ballinger Creek	330.405*	25-Yr	94.46	202.21	205.41		205.42	0.000268	0.94	203.44	143.46	0.10
Ballinger Creek	330.405*	100-Yr	139.46	202.21	205.55		205.57	0.000460	1.27	224.37	148.99	0.13
Ballinger Creek	322.013*	2-Yr	40.96	202.17	203.56		203.61	0.005018	1.86	25.44	67.19	0.35
Ballinger Creek	322.013*	10-Yr	71.92	202.17	205.30		205.31	0.000135	0.64	218.21	152.41	0.07
Ballinger Creek	322.013*	25-Yr	94.46	202.17	205.41		205.41	0.000194	0.79	234.32	155.04	0.08
Ballinger Creek	322.013*	100-Yr	139.46	202.17	205.55		205.56	0.000335	1.07	256.80	159.28	0.11
Ballinger Creek	313.621*	2-Yr	40.96	202.14	203.51		203.57	0.006892	1.92	23.28	74.44	0.40
Ballinger Creek	313.621*	10-Yr	71.92	202.14	205.30		205.31	0.000105	0.55	246.99	163.95	0.06
Ballinger Creek	313.621*	25-Yr	94.46	202.14	205.41		205.41	0.000150	0.68	264.29	166.25	0.07
Ballinger Creek	313.621*	100-Yr	139.46	202.14	205.55		205.56	0.000260	0.93	288.34	170.56	0.10
Ballinger Creek	305.23	2-Yr	40.96	202.10	203.37	203.27	203.47	0.020449	2.52	17.65	66.80	0.65
Ballinger Creek	305.23	10-Yr	71.92	202.10	205.30		205.31	0.000085	0.49	274.92	176.84	0.06
Ballinger Creek	305.23	25-Yr	94.46	202.10	205.41		205.41	0.000122	0.60	293.55	179.16	0.07
Ballinger Creek	305.23	100-Yr	139.46	202.10	205.55		205.56	0.000212	0.82	319.35	182.80	0.09
Ballinger Creek	287.203*	2-Yr	40.96	201.88	203.05	202.93	203.16	0.014133	3.12	25.66	87.34	0.60
Ballinger Creek	287.203*	10-Yr	71.92	201.88	205.30		205.30	0.000069	0.52	324.77	171.23	0.05
Ballinger Creek	287.203*	25-Yr	94.46	201.88	205.41		205.41	0.000102	0.64	342.76	173.58	0.06
Ballinger Creek	287.203*	100-Yr	139.46	201.88	205.55		205.55	0.000183	0.89	367.56	176.73	0.09
Ballinger Creek	269.176*	2-Yr	40.96	201.65	203.06		203.07	0.001449	1.09	59.66	91.66	0.19
Ballinger Creek	269.176*	10-Yr	71.92	201.65	205.30		205.30	0.000035	0.37	381.33	194.00	0.04
Ballinger Creek	269.176*	25-Yr	94.46	201.65	205.41		205.41	0.000053	0.47	401.79	199.38	0.05
Ballinger Creek	269.176*	100-Yr	139.46	201.65	205.55		205.55	0.000097	0.65	430.53	208.54	0.06
Ballinger Creek	251.15	2-Yr	40.96	201.43	203.05		203.06	0.000448	0.73	118.26	185.46	0.11
Ballinger Creek	251.15	10-Yr	71.92	201.43	205.30		205.30	0.000014	0.25	574.50	223.11	0.02
Ballinger Creek	251.15	25-Yr	94.46	201.43	205.41		205.41	0.000021	0.32	597.82	225.12	0.03
Ballinger Creek	251.15	100-Yr	139.46	201.43	205.55		205.55	0.000039	0.45	629.76	227.84	0.04
Ballinger Creek	161.57	2-Yr	40.96	199.22	203.05		203.05	0.00008	0.15	318.27	186.43	0.02
Ballinger Creek	161.57	10-Yr	71.92	199.22	205.30		205.30	0.000002	0.11	791.09	235.21	0.01
Ballinger Creek	161.57	25-Yr	94.46	199.22	205.41		205.41	0.00003	0.14	815.62	237.22	0.01
Ballinger Creek	161.57	100-Yr	139.46	199.22	205.55		205.55	0.000005	0.19	849.11	239.93	0.01

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	79.36	2-Yr	35.42	198.87	202.95	200.25	203.03	0.000841	2.19	16.17	36.36	0.19
Ballinger Creek	79.36	10-Yr	59.42	198.87	205.29	200.80	205.30	0.000070	0.79	189.11	142.77	0.06
Ballinger Creek	79.36	25-Yr	77.88	198.87	205.39	201.18	205.40	0.000107	0.99	203.40	143.93	0.07
Ballinger Creek	79.36	100-Yr	116.81	198.87	205.52	201.89	205.54	0.000206	1.39	222.12	145.43	0.10
Ballinger Creek	33		Culvert									
Ballinger Creek	0	2-Yr	35.42	196.37	197.86	197.86	198.54	0.033790	6.61	5.36	15.25	1.00
Ballinger Creek	0	10-Yr	59.42	196.37	198.26	198.00	198.42	0.007324	3.21	20.19	16.44	0.47
Ballinger Creek	0	25-Yr	77.88	196.37	198.48	198.00	198.68	0.007650	3.61	23.92	17.10	0.49
Ballinger Creek	0	100-Yr	116.81	196.37	198.88	198.21	199.16	0.008270	4.33	31.01	22.40	0.53
Ballinger Creek	-20	2-Yr	35.42	196.33	197.60	197.41	197.79	0.018220	3.46	10.55	14.52	0.68
Ballinger Creek	-20	10-Yr	59.42	196.33	197.89	197.68	198.16	0.018203	4.24	14.87	15.45	0.71
Ballinger Creek	-20	25-Yr	77.88	196.33	198.08	197.85	198.41	0.018204	4.71	17.82	16.01	0.73
Ballinger Creek	-20	100-Yr	116.81	196.33	198.42	198.17	198.87	0.018227	5.51	23.45	17.02	0.76

HEC-RAS Plan: Existing River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	3823.04	2-Yr	26.10	319.41	320.18	320.12	320.29	0.019274	2.84	11.77	35.33	0.66
Ballinger Creek	3823.04	10-Yr	47.94	319.41	320.36	320.28	320.51	0.021037	3.54	18.31	40.40	0.72
Ballinger Creek	3823.04	25-Yr	64.34	319.41	320.46	320.38	320.65	0.022354	3.96	22.44	43.31	0.76
Ballinger Creek	3823.04	100-Yr	97.93	319.41	320.62	320.55	320.88	0.024301	4.66	30.06	48.20	0.82
Ballinger Creek	3586.63	2-Yr	26.10	305.99	306.62	306.62	306.89	0.046359	4.15	6.30	12.11	1.00
Ballinger Creek	3586.63	10-Yr	47.94	305.99	306.90	306.90	307.27	0.039554	4.94	9.85	13.83	0.99
Ballinger Creek	3586.63	25-Yr	64.34	305.99	307.07	307.07	307.51	0.035822	5.37	12.32	14.88	0.97
Ballinger Creek	3586.63	100-Yr	97.93	305.99	307.37	307.37	307.92	0.031399	6.05	17.13	16.81	0.95
Ballinger Creek	3353.31	2-Yr	26.10	286.00	288.59	286.94	288.65	0.001300	2.02	12.93	9.53	0.22
Ballinger Creek	3353.31	10-Yr	47.94	286.00	289.80	287.42	289.90	0.001212	2.52	19.01	11.66	0.23
Ballinger Creek	3353.31	25-Yr	64.34	286.00	291.06	287.73	291.16	0.000841	2.54	25.32	24.55	0.20
Ballinger Creek	3353.31	100-Yr	97.93	286.00	292.43	288.29	292.45	0.000400	1.00	98.02	40.68	0.11
Ballinger Creek	3309.19		Culvert									
Ballinger Creek	3265.07	2-Yr	26.10	284.00	285.10	285.10	285.65	0.035659	5.97	4.37	18.32	1.00
Ballinger Creek	3265.07	10-Yr	47.94	284.00	285.65	285.65	286.48	0.030656	7.28	6.59	21.29	1.00
Ballinger Creek	3265.07	25-Yr	64.34	284.00	286.01	286.01	287.01	0.029065	8.06	7.98	23.12	1.00
Ballinger Creek	3265.07	100-Yr	97.93	284.00	286.66	286.66	287.99	0.026154	9.24	10.60	26.90	1.00
Ballinger Creek	3079.46	2-Yr	26.10	273.00	273.80		274.02	0.031983	3.75	6.95	9.38	0.77
Ballinger Creek	3079.46	10-Yr	47.94	273.00	274.00	274.00	274.45	0.052307	5.44	8.82	9.72	1.01
Ballinger Creek	3079.46	25-Yr	64.34	273.00	274.20	274.20	274.75	0.050188	5.92	10.87	10.08	1.00
Ballinger Creek	3079.46	100-Yr	97.93	273.00	274.57	274.57	275.26	0.047968	6.68	14.66	10.71	1.01
Ballinger Creek	2820.85	2-Yr	26.10	263.00	263.84	263.84	264.18	0.045882	4.67	5.58	8.32	1.01
Ballinger Creek	2820.85	10-Yr	47.94	263.00	264.25	264.25	264.46	0.020759	4.14	23.44	67.78	0.72
Ballinger Creek	2820.85	25-Yr	64.34	263.00	264.36	264.36	264.58	0.020565	4.44	31.67	70.44	0.73
Ballinger Creek	2820.85	100-Yr	97.93	263.00	264.51	264.51	264.79	0.025641	5.35	41.83	73.66	0.83
Ballinger Creek	2472.18	2-Yr	26.10	244.00	246.59	244.95	246.65	0.001300	2.02	12.93	17.93	0.22
Ballinger Creek	2472.18	10-Yr	47.94	244.00	247.80	245.42	247.90	0.001212	2.52	19.02	24.02	0.23
Ballinger Creek	2472.18	25-Yr	64.34	244.00	249.17	245.73	249.27	0.000785	2.49	25.85	31.81	0.19
Ballinger Creek	2472.18	100-Yr	97.93	244.00	250.66	246.29	250.66	0.000076	0.74	158.45	59.44	0.06
Ballinger Creek	2408.66		Culvert									

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	2345.13	2-Yr	26.10	242.00	243.02	243.02	243.53	0.036553	5.74	4.55	27.76	1.00
Ballinger Creek	2345.13	10-Yr	47.94	242.00	243.56	243.52	244.29	0.029405	6.86	6.99	37.31	0.97
Ballinger Creek	2345.13	25-Yr	64.34	242.00	243.86	243.86	244.79	0.029522	7.72	8.33	42.55	1.00
Ballinger Creek	2345.13	100-Yr	97.93	242.00	244.46	244.46	245.69	0.027096	8.90	11.00	53.19	1.00
Ballinger Creek	2304.16	2-Yr	26.10	240.00	242.61	240.84	242.65	0.000431	1.67	15.64	45.88	0.18
Ballinger Creek	2304.16	10-Yr	47.94	240.00	243.84	241.25	243.90	0.000401	2.08	23.01	61.86	0.19
Ballinger Creek	2304.16	25-Yr	64.34	240.00	244.15	241.53	244.16	0.000059	0.73	133.87	67.89	0.07
Ballinger Creek	2304.16	100-Yr	97.93	240.00	244.35	242.03	244.37	0.000108	1.03	148.27	73.20	0.09
Ballinger Creek	2212.95		Culvert									
Ballinger Creek	2080.76	2-Yr	26.10	235.00	236.10	236.10	236.65	0.022700	5.95	4.39	18.57	1.00
Ballinger Creek	2080.76	10-Yr	47.94	235.00	236.65	236.65	237.47	0.019689	7.27	6.59	35.64	1.00
Ballinger Creek	2080.76	25-Yr	64.34	235.00	237.00	237.00	238.00	0.018602	8.04	8.00	46.22	1.00
Ballinger Creek	2080.76	100-Yr	97.93	235.00	237.65	237.65	238.98	0.016783	9.22	10.62	65.70	1.00
Ballinger Creek	1962.59	2-Yr	26.10	229.00	229.73	229.73	230.07	0.046747	4.67	5.59	8.34	1.01
Ballinger Creek	1962.59	10-Yr	47.94	229.00	230.08	230.08	230.56	0.042732	5.57	8.61	8.99	1.00
Ballinger Creek	1962.59	25-Yr	64.34	229.00	230.29	230.29	230.87	0.042144	6.09	10.56	9.38	1.01
Ballinger Creek	1962.59	100-Yr	97.93	229.00	230.89	230.89	231.17	0.016684	4.69	30.31	60.00	0.66
Ballinger Creek	1783.23	2-Yr	39.60	223.00	224.26		224.42	0.010314	3.22	12.29	12.47	0.57
Ballinger Creek	1783.23	10-Yr	71.94	223.00	224.68		224.93	0.011734	4.02	17.92	14.29	0.63
Ballinger Creek	1783.23	25-Yr	93.69	223.00	224.91		225.21	0.012351	4.41	21.26	15.27	0.66
Ballinger Creek	1783.23	100-Yr	134.36	223.00	225.27		225.65	0.013027	4.97	27.05	16.83	0.69
Ballinger Creek	1729.65	2-Yr	39.60	222.19	223.13	223.13	223.45	0.038359	4.60	9.56	16.65	0.95
Ballinger Creek	1729.65	10-Yr	71.94	222.19	223.45	223.45	223.90	0.035419	5.61	14.99	17.92	0.97
Ballinger Creek	1729.65	25-Yr	93.69	222.19	223.63	223.63	224.16	0.033823	6.11	18.33	18.66	0.97
Ballinger Creek	1729.65	100-Yr	134.36	222.19	223.93	223.93	224.59	0.031850	6.86	24.22	20.85	0.98
Ballinger Creek	1673.6	2-Yr	39.60	219.14	220.73		220.90	0.010267	3.24	12.80	20.37	0.52
Ballinger Creek	1673.6	10-Yr	71.94	219.14	221.08		221.36	0.013237	4.35	20.20	22.33	0.61
Ballinger Creek	1673.6	25-Yr	93.69	219.14	221.27		221.61	0.014466	4.90	24.46	23.38	0.65
Ballinger Creek	1673.6	100-Yr	134.36	219.14	221.55	221.32	222.01	0.016506	5.78	31.29	24.98	0.71
Ballinger Creek	1620	2-Yr	39.60	218.87	220.21		220.32	0.010658	2.75	17.51	80.45	0.51
Ballinger Creek	1620	10-Yr	71.94	218.87	220.53		220.68	0.010631	3.37	28.81	90.74	0.54

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1620	25-Yr	93.69	218.87	220.66		220.86	0.012082	3.85	33.85	94.93	0.59
Ballinger Creek	1620	100-Yr	134.36	218.87	220.88	220.60	221.14	0.013753	4.54	42.84	101.92	0.64
Ballinger Creek	1525.96	2-Yr	39.60	217.43	218.79	218.76	218.88	0.023651	2.68	24.89	100.25	0.70
Ballinger Creek	1525.96	10-Yr	71.94	217.43	218.89	218.88	219.03	0.034648	3.66	33.97	101.17	0.87
Ballinger Creek	1525.96	25-Yr	93.69	217.43	218.97	218.93	219.12	0.031083	3.82	42.70	102.09	0.84
Ballinger Creek	1525.96	100-Yr	134.36	217.43	219.10	219.04	219.27	0.029869	4.22	55.54	103.44	0.85
Ballinger Creek	1507.45*	2-Yr	39.60	216.95	218.29	218.29	218.43	0.023897	3.14	18.24	105.83	0.73
Ballinger Creek	1507.45*	10-Yr	71.94	216.95	218.53	218.44	218.63	0.013968	3.02	43.95	109.53	0.59
Ballinger Creek	1507.45*	25-Yr	93.69	216.95	218.60	218.51	218.72	0.015456	3.36	52.13	110.75	0.63
Ballinger Creek	1507.45*	100-Yr	134.36	216.95	218.89	218.62	218.97	0.008679	3.03	84.19	114.89	0.49
Ballinger Creek	1488.95*	2-Yr	39.60	216.48	217.72		217.93	0.029724	3.74	10.58	25.03	0.82
Ballinger Creek	1488.95*	10-Yr	71.94	216.48	218.09	218.07	218.32	0.019025	3.99	25.63	84.05	0.71
Ballinger Creek	1488.95*	25-Yr	93.69	216.48	218.38		218.51	0.009171	3.28	50.88	91.24	0.51
Ballinger Creek	1488.95*	100-Yr	134.36	216.48	218.74		218.84	0.005730	3.07	89.24	121.86	0.42
Ballinger Creek	1470.45*	2-Yr	39.60	216.00	217.26	217.09	217.47	0.021204	3.65	10.84	13.27	0.71
Ballinger Creek	1470.45*	10-Yr	71.94	216.00	217.81	217.42	218.04	0.012502	3.87	20.31	44.37	0.59
Ballinger Creek	1470.45*	25-Yr	93.69	216.00	218.16	217.64	218.34	0.008108	3.63	39.47	72.45	0.49
Ballinger Creek	1470.45*	100-Yr	134.36	216.00	218.61	218.12	218.74	0.004901	3.32	78.40	94.92	0.40
Ballinger Creek	1451.95*	2-Yr	39.60	215.53	216.98		217.16	0.012653	3.37	11.74	10.30	0.56
Ballinger Creek	1451.95*	10-Yr	71.94	215.53	217.61		217.84	0.009299	3.85	20.89	30.68	0.51
Ballinger Creek	1451.95*	25-Yr	93.69	215.53	217.97		218.19	0.007594	3.94	33.99	54.86	0.48
Ballinger Creek	1451.95*	100-Yr	134.36	215.53	218.46		218.64	0.005443	3.83	66.07	78.10	0.42
Ballinger Creek	1433.45	2-Yr	39.60	215.05	216.66		216.90	0.015378	3.94	10.06	7.39	0.58
Ballinger Creek	1433.45	10-Yr	71.94	215.05	217.21		217.60	0.016425	5.06	15.60	17.65	0.64
Ballinger Creek	1433.45	25-Yr	93.69	215.05	217.50	217.06	217.96	0.016580	5.58	20.50	29.81	0.65
Ballinger Creek	1433.45	100-Yr	134.36	215.05	218.13	217.67	218.48	0.010751	5.29	46.71	58.45	0.55
Ballinger Creek	1416.93*	2-Yr	39.60	214.70	216.42		216.64	0.014146	3.82	10.39	7.88	0.58
Ballinger Creek	1416.93*	10-Yr	71.94	214.70	216.96		217.32	0.014757	4.87	15.98	14.08	0.62
Ballinger Creek	1416.93*	25-Yr	93.69	214.70	217.26		217.69	0.014744	5.36	20.55	24.90	0.64
Ballinger Creek	1416.93*	100-Yr	134.36	214.70	217.77	217.31	218.25	0.013176	5.83	35.73	54.49	0.62
Ballinger Creek	1400.42*	2-Yr	39.60	214.35	216.20		216.41	0.012969	3.68	10.78	8.63	0.57

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1400.42*	10-Yr	71.94	214.35	216.75		217.08	0.013167	4.65	16.64	13.30	0.60
Ballinger Creek	1400.42*	25-Yr	93.69	214.35	217.05		217.44	0.012842	5.08	21.32	21.15	0.61
Ballinger Creek	1400.42*	100-Yr	134.36	214.35	217.58	217.00	218.03	0.011771	5.63	34.03	52.90	0.61
Ballinger Creek	1383.91*	2-Yr	39.60	213.99	216.01		216.20	0.011806	3.53	11.28	9.44	0.55
Ballinger Creek	1383.91*	10-Yr	71.94	213.99	216.56		216.86	0.011475	4.38	17.63	13.85	0.57
Ballinger Creek	1383.91*	25-Yr	93.69	213.99	216.88		217.22	0.010864	4.75	22.65	17.77	0.57
Ballinger Creek	1383.91*	100-Yr	134.36	213.99	217.43	216.73	217.83	0.009779	5.25	35.22	52.10	0.56
Ballinger Creek	1367.40*	2-Yr	39.60	213.64	215.83		216.01	0.010820	3.38	11.84	10.16	0.53
Ballinger Creek	1367.40*	10-Yr	71.94	213.64	216.41		216.66	0.009987	4.12	18.79	14.52	0.54
Ballinger Creek	1367.40*	25-Yr	93.69	213.64	216.74	216.06	217.04	0.009161	4.42	24.31	18.22	0.53
Ballinger Creek	1367.40*	100-Yr	134.36	213.64	217.31	216.49	217.65	0.008103	4.86	36.87	51.55	0.52
Ballinger Creek	1350.89	2-Yr	41.16	213.29	215.13	215.13	215.60	0.042529	5.48	7.51	7.97	0.99
Ballinger Creek	1350.89	10-Yr	73.40	213.29	215.58	215.58	216.25	0.037663	6.59	11.28	10.29	0.99
Ballinger Creek	1350.89	25-Yr	95.02	213.29	215.84	215.84	216.62	0.034727	7.12	13.75	11.74	0.98
Ballinger Creek	1350.89	100-Yr	135.36	213.29	216.29	216.29	217.23	0.030826	7.87	18.31	15.39	0.96
Ballinger Creek	1304.66		Culvert									
Ballinger Creek	1258.43	2-Yr	41.16	211.73	213.26	213.01	213.52	0.017981	4.08	10.09	9.02	0.68
Ballinger Creek	1258.43	10-Yr	73.40	211.73	213.78	213.41	214.16	0.016091	4.95	14.84	9.03	0.68
Ballinger Creek	1258.43	25-Yr	95.02	211.73	214.09	213.65	214.54	0.015417	5.40	17.60	9.04	0.68
Ballinger Creek	1258.43	100-Yr	135.36	211.73	214.59	214.05	215.17	0.014865	6.12	22.10	9.05	0.69
Ballinger Creek	1190 72	2 Vr	41.16	210 55	212.22	211 02	212 50	0.000218	2.22	12.26	0.02	0.50
Ballinger Creek	1180.73	10 Vr	73.40	210.55	212.33	211.03	212.30	0.009210	4.25	17.30	9.02	0.50
Ballinger Creek	1180.73	25-Vr	95.02	210.55	212.07	212.23	213.13	0.009793	4.25	10.00	9.03	0.54
Ballinger Creek	1180.73	100-Yr	135.36	210.55	213.35	212.47	213.96	0.016040	6.27	21 59	9.04	0.00
Duninger Oreek	1100.70		100.00	210.00	210.00	212.07	210.00	0.010040	0.27	21.00	0.04	0.71
Ballinger Creek	1082.63	2-Yr	41.16	209.05	210.32	210.32	210.76	0.041768	5.29	7.78	9.01	1.00
Ballinger Creek	1082.63	10-Yr	73.40	209.05	210.73	210.73	211.37	0.036604	6.41	11.45	9.02	1.00
Ballinger Creek	1082.63	25-Yr	95.02	209.05	210.97	210.97	211.73	0.034159	6.96	13.64	9.02	1.00
Ballinger Creek	1082.63	100-Yr	135.36	209.05	212.44	211.37	212.84	0.007233	5.04	26.88	9.04	0.51
Ballinger Creek	1039.93		Culvert									
Ballinger Creek	997.22	2-Yr	41.16	207.75	209.31	209.03	209.55	0.016217	3.97	10.37	9.02	0.65

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	997.22	10-Yr	73.40	207.75	209.78	209.43	210.17	0.016420	5.01	14.65	9.03	0.69
Ballinger Creek	997.22	25-Yr	95.02	207.75	210.07	209.67	210.54	0.016218	5.53	17.19	9.03	0.71
Ballinger Creek	997.22	100-Yr	135.36	207.75	210.94	210.07	211.39	0.009517	5.40	25.05	9.05	0.57
Ballinger Creek	993.47	2-Yr	41.16	207.70	209.22	208.98	209.48	0.018669	4.13	9.98	9.02	0.69
Ballinger Creek	993.47	10-Yr	73.40	207.70	209.69	209.38	210.10	0.018278	5.14	14.27	9.03	0.72
Ballinger Creek	993.47	25-Yr	95.02	207.70	209.98	209.62	210.47	0.017798	5.64	16.84	9.03	0.73
Ballinger Creek	993.47	100-Yr	135.36	207.70	210.90	210.02	211.35	0.009671	5.37	25.23	9.05	0.57
Ballinger Creek	991.12	2-Yr	41.16	207.66	208.93	208.93	209.37	0.042162	5.29	7.77	9.01	1.00
Ballinger Creek	991.12	10-Yr	73.40	207.66	209.34	209.34	209.98	0.036648	6.38	11.50	9.02	1.00
Ballinger Creek	991.12	25-Yr	95.02	207.66	209.58	209.58	210.34	0.035080	6.98	13.62	9.02	1.00
Ballinger Creek	991.12	100-Yr	135.36	207.66	210.88	209.99	211.32	0.009130	5.34	25.37	9.05	0.56
Ballinger Creek	957.11		Culvert									
Ballinger Creek	923.1	2-Yr	41.16	206.62	208.22	207.89	208.45	0.014350	3.84	10.71	9.02	0.62
Ballinger Creek	923.1	10-Yr	73.40	206.62	208.72	208.31	209.08	0.014170	4.82	15.22	9.03	0.65
Ballinger Creek	923.1	25-Yr	95.02	206.62	209.00	208.54	209.45	0.014126	5.34	17.78	9.03	0.67
Ballinger Creek	923.1	100-Yr	135.36	206.62	209.58	208.94	210.12	0.012259	5.90	22.94	9.04	0.65
Ballinger Creek	895.61	2-Yr	41.16	206.20	207.87	207.48	208.07	0.012261	3.63	11.34	9.02	0.57
Ballinger Creek	895.61	10-Yr	73.40	206.20	208.35	207.88	208.69	0.013298	4.67	15.73	9.03	0.62
Ballinger Creek	895.61	25-Yr	95.02	206.20	208.63	208.13	209.05	0.013674	5.20	18.26	9.03	0.65
Ballinger Creek	895.61	100-Yr	135.36	206.20	209.28	208.52	209.77	0.011206	5.61	24.11	9.05	0.61
Ballinger Creek	869.95	2-Yr	41.16	205.81	207.08	207.08	207.52	0.041995	5.27	7.81	9.01	1.00
Ballinger Creek	869.95	10-Yr	73.40	205.81	207.49	207.49	208.13	0.037240	6.39	11.50	9.02	1.00
Ballinger Creek	869.95	25-Yr	95.02	205.81	207.73	207.73	208.48	0.035613	6.97	13.63	9.02	1.00
Ballinger Creek	869.95	100-Yr	135.36	205.81	209.06	208.13	209.49	0.009160	5.28	25.65	9.05	0.55
Ballinger Creek	835.76		Culvert									
Ballinger Creek	801.57	2-Yr	44.64	204.77	206.37	206.09	206.62	0.016086	4.07	11.44	14.32	0.66
Ballinger Creek	801.57	10-Yr	80.48	204.77	206.79	206.52	207.23	0.018550	5.36	15.71	15.95	0.74
Ballinger Creek	801.57	25-Yr	105.09	204.77	207.07	206.76	207.61	0.018742	5.97	18.42	16.76	0.77
Ballinger Creek	801.57	100-Yr	151.92	204.77	207.81	207.20	208.38	0.012897	6.18	25.81	18.98	0.67
Ballinger Creek	790.44	2-Yr	44.64	204.60	206.21		206.44	0.014417	3.88	13.30	14.42	0.62

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	790.44	10-Yr	80.48	204.60	206.65		207.00	0.015472	4.94	19.99	16.02	0.68
Ballinger Creek	790.44	25-Yr	105.09	204.60	206.96		207.35	0.014182	5.31	25.08	16.95	0.67
Ballinger Creek	790.44	100-Yr	151.92	204.60	207.81		208.15	0.008088	5.10	40.53	19.50	0.54
Ballinger Creek	736.76	2-Yr	44.64	203.79	205.35		205.60	0.016902	4.08	12.54	14.10	0.67
Ballinger Creek	736.76	10-Yr	80.48	203.79	206.09		206.33	0.009256	4.20	24.59	18.53	0.54
Ballinger Creek	736.76	25-Yr	105.09	203.79	206.54		206.78	0.007194	4.27	33.47	21.21	0.49
Ballinger Creek	736.76	100-Yr	151.92	203.79	207.66		207.83	0.003378	3.80	61.00	27.93	0.36
Ballinger Creek	686.18	2-Yr	44.64	203.01	204.77	204.33	204.94	0.009680	3.43	15.42	15.27	0.52
Ballinger Creek	686.18	10-Yr	80.48	203.01	205.91		206.04	0.003298	3.02	36.91	22.16	0.34
Ballinger Creek	686.18	25-Yr	105.09	203.01	206.40		206.53	0.002869	3.17	48.35	25.06	0.32
Ballinger Creek	686.18	100-Yr	151.92	203.01	207.59		207.70	0.001638	3.00	82.54	33.38	0.26
Ballinger Creek	647.82	2-Yr	44.64	202.43	203.75	203.75	204.19	0.039509	5.34	8.66	10.83	0.99
Ballinger Creek	647.82	10-Yr	80.48	202.43	205.80	204.17	205.93	0.002422	2.90	29.16	16.99	0.30
Ballinger Creek	647.82	25-Yr	105.09	202.43	206.25	204.42	206.41	0.002563	3.28	33.70	18.35	0.31
Ballinger Creek	647.82	100-Yr	151.92	202.43	207.42	204.85	207.60	0.001999	3.52	45.59	23.74	0.29
Ballinger Creek	600		Culvert									
Ballinger Creek	556.52	2-Yr	44.64	201.26	203.67	202.59	203.74	0.002478	2.26	22.36	16.10	0.28
Ballinger Creek	556.52	10-Yr	80.48	201.26	205.43	202.98	205.49	0.000933	2.11	43.44	21.39	0.19
Ballinger Creek	556.52	25-Yr	105.09	201.26	205.56	203.22	205.66	0.001413	2.66	45.05	21.83	0.24
Ballinger Creek	556.52	100-Yr	151.92	201.26	205.82	203.61	206.00	0.002379	3.60	48.11	22.67	0.31
Ballinger Creek	500.87	2-Yr	44.64	201.12	203.54		203.61	0.002259	2.16	26.90	19.25	0.27
Ballinger Creek	500.87	10-Yr	80.48	201.12	205.40		205.43	0.000611	1.74	71.36	27.39	0.16
Ballinger Creek	500.87	25-Yr	105.09	201.12	205.52		205.57	0.000925	2.19	74.69	27.78	0.19
Ballinger Creek	500.87	100-Yr	151.92	201.12	205.75		205.85	0.001567	2.95	81.20	28.96	0.25
Ballinger Creek	420.45	2-Yr	44.64	200.93	203.33		203.41	0.002661	2.33	22.26	14.24	0.29
Ballinger Creek	420.45	10-Yr	80.48	200.93	205.32		205.38	0.000753	1.97	59.26	30.01	0.17
Ballinger Creek	420.45	25-Yr	105.09	200.93	205.40		205.49	0.001215	2.53	61.65	33.98	0.22
Ballinger Creek	420.45	100-Yr	151.92	200.93	205.52		205.69	0.002293	3.55	66.19	40.48	0.31
Ballinger Creek	355.7	2-Yr	44.64	200.77	203.15		203.23	0.002740	2.35	22.13	15.84	0.30
Ballinger Creek	355.7	10-Yr	80.48	200.77	205.31		205.33	0.000401	1.47	126.84	101.76	0.13
Ballinger Creek	355.7	25-Yr	105.09	200.77	205.38		205.42	0.000628	1.86	134.13	108.51	0.16

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	355.7	100-Yr	151.92	200.77	205.49		205.56	0.001137	2.55	147.09	119.58	0.22
Ballinger Creek	305.28	2-Yr	44.64	200.65	203.04		203.10	0.002219	2.12	31.58	32.73	0.27
Ballinger Creek	305.28	10-Yr	80.48	200.65	205.32		205.32	0.000090	0.71	312.15	177.10	0.06
Ballinger Creek	305.28	25-Yr	105.09	200.65	205.39		205.39	0.000138	0.89	325.15	178.69	0.08
Ballinger Creek	305.28	100-Yr	151.92	200.65	205.51		205.52	0.000243	1.20	347.21	181.81	0.10
Ballinger Creek	251.15	2-Yr	44.64	200.52	203.05		203.05	0.000288	0.80	156.80	185.31	0.10
Ballinger Creek	251.15	10-Yr	80.48	200.52	205.32		205.32	0.000017	0.31	616.65	223.24	0.03
Ballinger Creek	251.15	25-Yr	105.09	200.52	205.39		205.39	0.000027	0.40	633.01	224.65	0.03
Ballinger Creek	251.15	100-Yr	151.92	200.52	205.51		205.51	0.000049	0.55	660.62	227.02	0.05
Ballinger Creek	161.57	2-Yr	44.64	199.22	203.05		203.05	0.000023	0.26	327.80	186.35	0.03
Ballinger Creek	161.57	10-Yr	80.48	199.22	205.32		205.32	0.00006	0.20	796.16	232.18	0.02
Ballinger Creek	161.57	25-Yr	105.09	199.22	205.39		205.39	0.000010	0.26	813.08	233.97	0.02
Ballinger Creek	161.57	100-Yr	151.92	199.22	205.51		205.51	0.000018	0.36	841.62	236.95	0.03
Ballinger Creek	79.36	2-Yr	35.32	198.87	202.95	200.24	203.02	0.000842	2.19	16.14	36.31	0.19
Ballinger Creek	79.36	10-Yr	59.56	198.87	205.31	200.81	205.31	0.000069	0.79	191.03	142.93	0.06
Ballinger Creek	79.36	25-Yr	78.14	198.87	205.37	201.19	205.38	0.000110	1.00	200.70	143.71	0.07
Ballinger Creek	79.36	100-Yr	116.70	198.87	205.48	201.89	205.50	0.000216	1.41	216.28	144.97	0.10
Ballinger Creek	33		Culvert									
Ballinger Creek	0	2-Yr	35.32	196.41	197.90	197.90	198.57	0.033466	6.56	5.38	14.24	1.00
Ballinger Creek	0	10-Yr	59.56	196.41	198.25	198.00	198.44	0.008983	3.55	18.36	15.03	0.52
Ballinger Creek	0	25-Yr	78.14	196.41	198.46	198.01	198.70	0.009612	4.02	21.60	15.53	0.55
Ballinger Creek	0	100-Yr	116.70	196.41	198.83	198.29	199.18	0.010595	4.84	27.53	16.41	0.60
Ballinger Creek	-20	2-Yr	35.32	196.33	197.60	197.41	197.78	0.018220	3.46	10.53	14.51	0.68
Ballinger Creek	-20	10-Yr	59.56	196.33	197.89	197.68	198.16	0.018203	4.24	14.90	15.45	0.71
Ballinger Creek	-20	25-Yr	78.14	196.33	198.08	197.85	198.41	0.018205	4.71	17.86	16.01	0.73
Ballinger Creek	-20	100-Yr	116.70	196.33	198.42	198.17	198.87	0.018228	5.51	23.44	17.02	0.76

HEC-RAS Plan: Alt1-MOD2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	3833.85	2-Yr	26.34	319.41	320.19	320.12	320.30	0.019291	2.85	11.86	35.40	0.66
Ballinger Creek	3833.85	10-Yr	48.17	319.41	320.36	320.28	320.52	0.021056	3.55	18.37	40.44	0.72
Ballinger Creek	3833.85	25-Yr	64.54	319.41	320.46	320.38	320.65	0.022394	3.97	22.48	43.33	0.76
Ballinger Creek	3833.85	100-Yr	98.02	319.41	320.62	320.55	320.88	0.024336	4.66	30.06	48.21	0.82
Ballinger Creek	3597.45	2-Yr	26.34	305.99	306.63	306.63	306.90	0.046221	4.16	6.35	12.13	1.00
Ballinger Creek	3597.45	10-Yr	48.17	305.99	306.90	306.90	307.28	0.039474	4.94	9.88	13.85	0.99
Ballinger Creek	3597.45	25-Yr	64.54	305.99	307.07	307.07	307.51	0.035782	5.38	12.35	14.89	0.97
Ballinger Creek	3597.45	100-Yr	98.02	305.99	307.37	307.37	307.93	0.031378	6.05	17.14	16.82	0.95
Ballinger Creek	3364.13	2-Yr	26.34	286.00	288.60	286.95	288.66	0.001300	2.03	13.00	9.55	0.22
Ballinger Creek	3364.13	10-Yr	48.17	286.00	289.82	287.42	289.91	0.001210	2.52	19.08	11.68	0.23
Ballinger Creek	3364.13	25-Yr	64.54	286.00	290.79	287.73	290.90	0.001021	2.70	23.93	21.28	0.22
Ballinger Creek	3364.13	100-Yr	98.02	286.00	292.42	288.29	292.43	0.000405	1.00	97.55	40.54	0.11
Ballinger Creek	3300		Culvert									
Ballinger Creek	3275.89	2-Yr	26.34	284.00	285.11	285.11	285.66	0.035113	5.97	4.41	18.39	1.00
Ballinger Creek	3275.89	10-Yr	48.17	284.00	285.66	285.66	286.49	0.030579	7.29	6.61	21.32	1.00
Ballinger Creek	3275.89	25-Yr	64.54	284.00	286.01	286.01	287.02	0.028861	8.05	8.02	23.17	1.00
Ballinger Creek	3275.89	100-Yr	98.02	284.00	286.66	286.66	287.99	0.026181	9.24	10.61	26.90	1.00
Ballinger Creek	3090.28	2-Yr	26.34	273.00	273.80		274.02	0.031928	3.76	7.00	9.39	0.77
Ballinger Creek	3090.28	10-Yr	48.17	273.00	274.00	274.00	274.46	0.052308	5.45	8.85	9.72	1.01
Ballinger Creek	3090.28	25-Yr	64.54	273.00	274.20	274.20	274.75	0.050198	5.93	10.89	10.08	1.00
Ballinger Creek	3090.28	100-Yr	98.02	273.00	274.57	274.57	275.26	0.047952	6.68	14.67	10.71	1.01
Ballinger Creek	2831.67	2-Yr	26.34	263.00	263.84	263.84	264.18	0.045928	4.69	5.62	8.34	1.01
Ballinger Creek	2831.67	10-Yr	48.17	263.00	264.25	264.25	264.46	0.020789	4.15	23.54	67.81	0.72
Ballinger Creek	2831.67	25-Yr	64.54	263.00	264.37	264.37	264.59	0.020637	4.45	31.72	70.46	0.73
Ballinger Creek	2831.67	100-Yr	98.02	263.00	264.51	264.51	264.80	0.025656	5.36	41.85	73.67	0.83
Ballinger Creek	2483	2-Yr	26.34	244.00	246.34	244.96	246.42	0.001836	2.25	11.72	16.72	0.26
Ballinger Creek	2483	10-Yr	48.17	244.00	247.71	245.43	247.81	0.001334	2.60	18.53	23.53	0.24
Ballinger Creek	2483	25-Yr	64.54	244.00	249.19	245.73	249.29	0.000779	2.49	25.95	31.93	0.19
Ballinger Creek	2483	100-Yr	98.02	244.00	250.67	246.29	250.68	0.000076	0.73	159.26	59.59	0.06
Ballinger Creek	2400		Culvert									

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	2355.95	2-Yr	26.34	242.00	243.02	243.02	243.54	0.036693	5.77	4.57	27.84	1.01
Ballinger Creek	2355.95	10-Yr	48.17	242.00	243.58	243.53	244.30	0.028671	6.82	7.07	37.60	0.96
Ballinger Creek	2355.95	25-Yr	64.54	242.00	243.86	243.86	244.79	0.029814	7.75	8.32	42.51	1.00
Ballinger Creek	2355.95	100-Yr	98.02	242.00	244.47	244.47	245.69	0.026787	8.88	11.04	53.37	1.00
Ballinger Creek	2314.97	2-Yr	26.34	240.00	242.62	240.84	242.66	0.000431	1.68	15.72	46.07	0.18
Ballinger Creek	2314.97	10-Yr	48.17	240.00	243.85	241.26	243.92	0.000400	2.09	23.09	62.03	0.19
Ballinger Creek	2314.97	25-Yr	64.54	240.00	244.15	241.53	244.16	0.000059	0.73	133.96	67.92	0.07
Ballinger Creek	2314.97	100-Yr	98.02	240.00	244.34	242.02	244.36	0.000109	1.03	147.61	72.97	0.09
Ballinger Creek	2300		Culvert									
Ballinger Creek	2091.38	2-Yr	26.34	235.00	236.11	236.11	236.66	0.022506	5.96	4.42	18.66	1.00
Ballinger Creek	2091.38	10-Yr	48.17	235.00	236.65	236.65	237.48	0.019878	7.31	6.59	35.64	1.00
Ballinger Creek	2091.38	25-Yr	64.54	235.00	237.00	237.00	238.01	0.018593	8.05	8.02	46.34	1.00
Ballinger Creek	2091.38	100-Yr	98.02	235.00	237.65	237.65	238.98	0.016819	9.23	10.61	65.69	1.00
Ballinger Creek	1973.22	2-Yr	26.34	229.00	229.74	229.74	230.07	0.045232	4.63	5.68	8.36	0.99
Ballinger Creek	1973.22	10-Yr	48.17	229.00	230.08	230.08	230.56	0.042829	5.58	8.63	8.99	1.00
Ballinger Creek	1973.22	25-Yr	64.54	229.00	230.30	230.30	230.87	0.041321	6.06	10.65	9.39	1.00
Ballinger Creek	1973.22	100-Yr	98.02	229.00	230.68	230.68	231.40	0.039917	6.82	14.36	41.23	1.01
Ballinger Creek	1793.86	2-Yr	39.28	223.00	224.26		224.42	0.010297	3.21	12.23	12.45	0.57
Ballinger Creek	1793.86	10-Yr	71.20	223.00	224.67		224.92	0.011718	4.00	17.79	14.26	0.63
Ballinger Creek	1793.86	25-Yr	92.94	223.00	224.90		225.20	0.012277	4.39	21.18	15.25	0.66
Ballinger Creek	1793.86	100-Yr	134.03	223.00	225.27		225.65	0.013019	4.96	27.01	16.82	0.69
Ballinger Creek	1740.27	2-Yr	39.28	222.19	223.13	223.13	223.44	0.038342	4.58	9.51	16.63	0.95
Ballinger Creek	1740.27	10-Yr	71.20	222.19	223.44	223.44	223.89	0.035486	5.59	14.87	17.89	0.97
Ballinger Creek	1740.27	25-Yr	92.94	222.19	223.62	223.62	224.15	0.034136	6.11	18.17	18.62	0.98
Ballinger Creek	1740.27	100-Yr	134.03	222.19	223.93	223.93	224.58	0.031864	6.85	24.18	20.83	0.98
Ballingar Craak	1694.00	2 Vr	20.29	210.14	220 72		220.90	0.010002	2.22	12.90	20.27	0.51
Ballinger Creek	1004.22	2-11	39.20	219.14	220.73		220.09	0.010092	3.22	12.00	20.37	0.51
Ballinger Creek	1004.22	10-11 25 Vr	/ 1.20	219.14	221.00		221.34	0.013441	4.30	19.80	22.24	0.62
Ballinger Creek	1084.22	20-11	92.94	219.14	221.24	004.00	221.59	0.014988	4.95	23.91	23.24	0.66
Bailinger Creek	1684.22	100-11	134.03	219.14	221.52	221.32	222.00	0.017215	5.86	30.68	24.83	0.73
Dellinger Orest	1020.02	2. \/=	20.00	040.07	220.40		000.00	0.011000	0.00	46.00	70.44	0.50
Ballinger Creek	1630.62	2-11	39.28	218.87	220.18	000.00	220.29	0.011632	2.82	16.66	/9.41	0.53
Ballinger Creek	1630.62	10-Yr	/1.20	218.87	220.53	220.22	220.68	0.010222	3.32	28.97	90.71	0.53

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1630.62	25-Yr	92.94	218.87	220.70	220.36	220.87	0.010461	3.66	35.57	96.15	0.55
Ballinger Creek	1630.62	100-Yr	134.03	218.87	220.93	220.59	221.17	0.011849	4.32	45.31	103.61	0.60
Ballinger Creek	1536.58	2-Yr	39.28	217.43	218.81	218.76	218.89	0.019326	2.49	26.80	100.40	0.63
Ballinger Creek	1536.58	10-Yr	71.20	217.43	218.88	218.88	219.03	0.036821	3.72	32.97	101.06	0.89
Ballinger Creek	1536.58	25-Yr	92.94	217.43	218.93	218.93	219.11	0.041939	4.22	38.18	101.62	0.97
Ballinger Creek	1536.58	100-Yr	134.03	217.43	219.04	219.04	219.26	0.041456	4.71	49.57	102.82	0.99
Ballinger Creek	1518.08*	2-Yr	39.28	216.95	218.20	218.15	218.38	0.037432	3.57	12.10	102.46	0.89
Ballinger Creek	1518.08*	10-Yr	71.20	216.95	218.39	218.21	218.42	0.008129	2.06	61.61	107.26	0.44
Ballinger Creek	1518.08*	25-Yr	92.94	216.95	218.55	218.21	218.58	0.006440	2.10	78.80	110.03	0.40
Ballinger Creek	1518.08*	100-Yr	134.03	216.95	218.82	218.25	218.85	0.004855	2.19	109.12	114.30	0.37
Ballinger Creek	1499.59*	2-Yr	39.28	216.48	217.70	217.56	217.85	0.021823	3.15	12.47	26.55	0.70
Ballinger Creek	1499.59*	10-Yr	71.20	216.48	218.20	217.81	218.28	0.006665	2.53	45.86	86.98	0.42
Ballinger Creek	1499.59*	25-Yr	92.94	216.48	218.39	218.05	218.47	0.005389	2.53	63.23	92.20	0.39
Ballinger Creek	1499.59*	100-Yr	134.03	216.48	218.67	218.21	218.76	0.005049	2.79	91.41	120.70	0.39
Ballinger Creek	1481.09*	2-Yr	39.28	216.00	217.58	217.02	217.65	0.005315	2.22	17.79	24.20	0.37
Ballinger Creek	1481.09*	10-Yr	71.20	216.00	218.10	217.31	218.19	0.003957	2.48	42.26	69.75	0.34
Ballinger Creek	1481.09*	25-Yr	92.94	216.00	218.28	217.49	218.38	0.004140	2.72	55.83	79.97	0.36
Ballinger Creek	1481.09*	100-Yr	134.03	216.00	218.55	217.80	218.67	0.004334	3.06	79.83	93.51	0.37
Ballinger Creek	1462.60*	2-Yr	39.28	215.53	217.52	216.54	217.58	0.002760	2.03	20.54	26.00	0.28
Ballinger Creek	1462.60*	10-Yr	71.20	215.53	218.04	216.91	218.12	0.002801	2.45	45.54	56.13	0.29
Ballinger Creek	1462.60*	25-Yr	92.94	215.53	218.20	217.12	218.31	0.003436	2.85	55.16	64.54	0.33
Ballinger Creek	1462.60*	100-Yr	134.03	215.53	218.43	217.48	218.58	0.004494	3.47	71.79	77.38	0.38
Ballinger Creek	1444.11	2-Yr	39.28	215.05	217.44	216.20	217.52	0.003252	2.43	19.25	27.12	0.29
Ballinger Creek	1444.11	10-Yr	71.20	215.05	217.95	216.70	218.06	0.003700	2.97	43.75	55.91	0.32
Ballinger Creek	1444.11	25-Yr	92.94	215.05	218.09	217.04	218.23	0.004671	3.45	51.69	58.03	0.36
Ballinger Creek	1444.11	100-Yr	134.03	215.05	218.26	217.67	218.47	0.006946	4.38	61.90	63.04	0.44
Ballinger Creek	1425.92*	2-Yr	39.28	214.73	217.41	215.99	217.47	0.001870	1.99	24.13	30.14	0.23
Ballinger Creek	1425.92*	10-Yr	71.20	214.73	217.92	216.46	218.00	0.002251	2.50	51.00	57.23	0.26
Ballinger Creek	1425.92*	25-Yr	92.94	214.73	218.05	216.74	218.16	0.003017	2.98	58.57	61.55	0.31
Ballinger Creek	1425.92*	100-Yr	134.03	214.73	218.19	217.25	218.37	0.004864	3.91	67.79	67.85	0.39
Ballinger Creek	1407.74*	2-Yr	39.28	214.42	217.39	215.82	217.43	0.001181	1.67	29.53	45.34	0.19

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	1407.74*	10-Yr	71.20	214.42	217.90	216.25	217.96	0.001474	2.13	59.84	63.03	0.22
Ballinger Creek	1407.74*	25-Yr	92.94	214.42	218.02	216.52	218.10	0.002022	2.57	67.85	68.15	0.26
Ballinger Creek	1407.74*	100-Yr	134.03	214.42	218.15	216.96	218.29	0.003369	3.41	76.87	73.49	0.34
Ballinger Creek	1389.56*	2-Yr	39.28	214.10	217.38	215.67	217.41	0.000768	1.40	40.05	50.43	0.16
Ballinger Creek	1389.56*	10-Yr	71.20	214.10	217.89	216.09	217.93	0.001000	1.82	69.39	66.13	0.19
Ballinger Creek	1389.56*	25-Yr	92.94	214.10	218.01	216.32	218.07	0.001396	2.20	77.45	70.53	0.22
Ballinger Creek	1389.56*	100-Yr	134.03	214.10	218.13	216.72	218.23	0.002399	2.96	85.91	74.98	0.29
Ballinger Creek	1371.38	2-Yr	39.28	213.78	217.37	215.62	217.39	0.000563	1.23	44.85	48.94	0.14
Ballinger Creek	1371.38	10-Yr	71.20	213.78	217.88	216.26	217.91	0.000791	1.65	74.11	66.45	0.17
Ballinger Creek	1371.38	25-Yr	92.94	213.78	217.99	216.63	218.05	0.001223	2.10	82.25	95.86	0.21
Ballinger Creek	1371.38	100-Yr	134.03	213.78	218.09	217.00	218.19	0.002183	2.86	93.07	113.11	0.28
Ballinger Creek	1300		Culvert									
Ballinger Creek	820.39	2-Yr	38.22	207.49	208.94	208.94	209.60	0.038565	6.56	5.83	32.62	1.00
Ballinger Creek	820.39	10-Yr	62.96	207.49	213.01	209.00	213.01	0.000042	0.25	358.81	223.53	0.02
Ballinger Creek	820.39	25-Yr	80.57	207.49	213.02	209.00	213.02	0.000068	0.32	359.42	223.61	0.03
Ballinger Creek	820.39	100-Yr	114.97	207.49	213.26	209.01	213.26	0.000100	0.39	414.62	231.24	0.03
Ballinger Creek	790.39	2-Yr	38.22	206.99	208.50	207.98	208.51	0.001999	0.73	46.11	56.25	0.14
Ballinger Creek	790.39	10-Yr	62.96	206.99	213.01	208.09	213.01	0.00008	0.15	511.54	224.54	0.01
Ballinger Creek	790.39	25-Yr	80.57	206.99	213.02	208.16	213.02	0.000014	0.19	512.13	224.61	0.02
Ballinger Creek	790.39	100-Yr	114.97	206.99	213.26	208.27	213.26	0.000022	0.25	567.51	232.18	0.02
Ballinger Creek	736.73	2-Yr	38.22	206.50	208.46	207.17	208.47	0.000430	0.75	61.90	49.14	0.11
Ballinger Creek	736.73	10-Yr	62.96	206.50	213.01	207.55	213.01	0.000005	0.21	616.33	254.82	0.02
Ballinger Creek	736.73	25-Yr	80.57	206.50	213.02	207.63	213.02	0.00008	0.27	616.93	254.85	0.02
Ballinger Creek	736.73	100-Yr	114.97	206.50	213.26	207.77	213.26	0.000013	0.36	678.88	257.05	0.03
Ballinger Creek	686.13	2-Yr	38.22	205.76	208.44	206.72	208.45	0.000368	0.97	59.66	41.91	0.11
Ballinger Creek	686.13	10-Yr	62.96	205.76	213.01	207.04	213.01	0.000006	0.25	736.20	297.08	0.02
Ballinger Creek	686.13	25-Yr	80.57	205.76	213.02	207.21	213.02	0.000009	0.32	736.85	297.10	0.02
Ballinger Creek	686.13	100-Yr	114.97	205.76	213.26	207.46	213.26	0.000015	0.41	808.92	298.95	0.03
Ballinger Creek	647.77	2-Yr	38.22	204.59	208.29	206.29	208.41	0.001958	2.76	13.83	21.88	0.26
Ballinger Creek	647.77	10-Yr	62.96	204.59	213.01	206.84	213.01	0.000030	0.56	224.98	63.86	0.04
Ballinger Creek	647.77	25-Yr	80.57	204.59	213.01	207.19	213.01	0.000050	0.72	224.98	63.86	0.05

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	647.77	100-Yr	114.97	204.59	213.25	207.81	213.26	0.000087	0.97	240.20	64.34	0.06
Ballinger Creek	600		Culvert									
Ballinger Creek	556.47	2-Yr	38.22	204.97	206.40	206.40	206.49	0.007298	2.37	16.36	18.51	0.44
Ballinger Creek	556.47	10-Yr	62.96	204.97	206.58	206.40	206.75	0.010747	3.25	19.81	18.98	0.55
Ballinger Creek	556.47	25-Yr	80.57	204.97	206.78	206.41	206.97	0.010111	3.52	23.61	19.48	0.54
Ballinger Creek	556.47	100-Yr	114.97	204.97	207.13	206.59	207.37	0.009258	3.94	30.54	20.36	0.54
Ballinger Creek	537.923*	2-Yr	38.22	204.34	205.68	205.65	206.01	0.027955	4.74	9.82	15.50	0.85
Ballinger Creek	537.923*	10-Yr	62.96	204.34	206.07	205.95	206.42	0.020877	5.12	16.70	19.46	0.78
Ballinger Creek	537.923*	25-Yr	80.57	204.34	206.28	206.13	206.66	0.019080	5.41	21.07	20.58	0.76
Ballinger Creek	537.923*	100-Yr	114.97	204.34	206.64		207.08	0.017500	5.93	28.74	22.38	0.75
Ballinger Creek	519.376*	2-Yr	38.22	203.71	205.28		205.56	0.019125	4.30	9.53	11.67	0.70
Ballinger Creek	519.376*	10-Yr	62.96	203.71	205.78		206.09	0.013730	4.63	17.50	20.83	0.63
Ballinger Creek	519.376*	25-Yr	80.57	203.71	206.02		206.35	0.012891	4.92	22.92	23.89	0.63
Ballinger Creek	519.376*	100-Yr	114.97	203.71	206.41		206.78	0.011920	5.35	32.74	26.29	0.62
Ballinger Creek	500.83	2-Yr	38.22	203.08	205.14		205.29	0.007220	3.19	12.96	11.43	0.44
Ballinger Creek	500.83	10-Yr	62.96	203.08	205.66		205.86	0.006852	3.74	22.73	27.75	0.45
Ballinger Creek	500.83	25-Yr	80.57	203.08	205.91		206.13	0.006822	4.02	29.95	29.96	0.46
Ballinger Creek	500.83	100-Yr	114.97	203.08	206.31		206.55	0.006791	4.45	42.66	33.49	0.47
Ballinger Creek	420.4	2-Yr	38.22	202.45	204.36	203.86	204.57	0.011282	3.81	12.34	15.16	0.53
Ballinger Creek	420.4	10-Yr	62.96	202.45	205.24	204.36	205.38	0.004900	3.36	30.31	26.20	0.38
Ballinger Creek	420.4	25-Yr	80.57	202.45	205.39	204.66	205.58	0.006499	4.03	34.67	33.26	0.44
Ballinger Creek	420.4	100-Yr	114.97	202.45	205.55	204.94	205.88	0.010207	5.26	40.96	42.14	0.55
Ballinger Creek	355.58	2-Yr	38.22	202.31	203.68	203.33	203.82	0.011238	3.23	18.66	38.05	0.51
Ballinger Creek	355.58	10-Yr	62.96	202.31	205.22	203.75	205.24	0.000795	1.47	99.05	92.65	0.16
Ballinger Creek	355.58	25-Yr	80.57	202.31	205.37	203.86	205.40	0.000997	1.71	114.80	107.96	0.18
Ballinger Creek	355.58	100-Yr	114.97	202.31	205.56	204.06	205.59	0.001466	2.16	136.29	125.88	0.22
Ballinger Creek	347.188*	2-Yr	38.22	202.27	203.64		203.73	0.006547	2.50	20.25	44.35	0.41
Ballinger Creek	347.188*	10-Yr	62.96	202.27	205.22		205.23	0.000417	1.12	122.80	111.99	0.12
Ballinger Creek	347.188*	25-Yr	80.57	202.27	205.37		205.39	0.000507	1.28	141.14	120.18	0.13
Ballinger Creek	347.188*	100-Yr	114.97	202.27	205.56		205.58	0.000744	1.62	164.17	130.48	0.16

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	338.796*	2-Yr	38.22	202.24	203.61		203.68	0.004735	2.06	23.09	51.10	0.35
Ballinger Creek	338.796*	10-Yr	62.96	202.24	205.22		205.23	0.000250	0.87	149.55	125.63	0.09
Ballinger Creek	338.796*	25-Yr	80.57	202.24	205.38		205.39	0.000304	1.00	169.84	131.04	0.10
Ballinger Creek	338.796*	100-Yr	114.97	202.24	205.56		205.57	0.000452	1.27	194.73	138.86	0.13
Ballinger Creek	330.405*	2-Yr	38.22	202.21	203.58		203.63	0.004320	1.85	24.45	58.14	0.33
Ballinger Creek	330.405*	10-Yr	62.96	202.21	205.22		205.22	0.000168	0.71	176.63	137.73	0.08
Ballinger Creek	330.405*	25-Yr	80.57	202.21	205.38		205.38	0.000206	0.82	198.74	142.43	0.09
Ballinger Creek	330.405*	100-Yr	114.97	202.21	205.56		205.57	0.000308	1.04	225.66	149.29	0.11
Ballinger Creek	322.013*	2-Yr	38.22	202.17	203.55		203.60	0.004687	1.77	24.41	66.57	0.34
Ballinger Creek	322.013*	10-Yr	62.96	202.17	205.22		205.22	0.000122	0.59	205.20	150.50	0.07
Ballinger Creek	322.013*	25-Yr	80.57	202.17	205.38		205.38	0.000150	0.69	229.25	154.03	0.07
Ballinger Creek	322.013*	100-Yr	114.97	202.17	205.56		205.57	0.000225	0.88	258.18	159.54	0.09
Ballinger Creek	313.621*	2-Yr	38.22	202.14	203.50		203.55	0.006330	1.82	22.81	72.30	0.39
Ballinger Creek	313.621*	10-Yr	62.96	202.14	205.22		205.22	0.000094	0.51	233.00	162.23	0.06
Ballinger Creek	313.621*	25-Yr	80.57	202.14	205.38		205.38	0.000116	0.59	258.86	165.35	0.07
Ballinger Creek	313.621*	100-Yr	114.97	202.14	205.56		205.57	0.000174	0.76	289.85	170.83	0.08
Ballinger Creek	305.23	2-Yr	38.22	202.10	203.39	203.25	203.47	0.015814	2.26	18.40	70.01	0.58
Ballinger Creek	305.23	10-Yr	62.96	202.10	205.22		205.22	0.000076	0.45	259.82	175.18	0.05
Ballinger Creek	305.23	25-Yr	80.57	202.10	205.38		205.38	0.000094	0.52	287.71	178.33	0.06
Ballinger Creek	305.23	100-Yr	114.97	202.10	205.56		205.56	0.000142	0.67	321.01	183.03	0.07
Ballinger Creek	287.203*	2-Yr	38.22	201.88	202.93	202.93	203.11	0.024219	3.71	16.27	66.68	0.76
Ballinger Creek	287.203*	10-Yr	62.96	201.88	205.22		205.22	0.000060	0.48	310.19	169.25	0.05
Ballinger Creek	287.203*	25-Yr	80.57	201.88	205.37		205.38	0.000078	0.56	337.15	172.86	0.06
Ballinger Creek	287.203*	100-Yr	114.97	201.88	205.56		205.56	0.000123	0.73	369.30	176.95	0.07
Ballinger Creek	269.176*	2-Yr	38.22	201.65	202.94		202.96	0.002123	1.22	49.02	88.56	0.23
Ballinger Creek	269.176*	10-Yr	62.96	201.65	205.22		205.22	0.000030	0.34	365.08	185.80	0.03
Ballinger Creek	269.176*	25-Yr	80.57	201.65	205.37		205.37	0.000041	0.41	395.41	197.78	0.04
Ballinger Creek	269.176*	100-Yr	114.97	201.65	205.56		205.56	0.000065	0.54	432.70	209.11	0.05
Ballinger Creek	251.15	2-Yr	38.22	201.43	202.93		202.94	0.000670	0.83	95.56	183.77	0.14
Ballinger Creek	251.15	10-Yr	62.96	201.43	205.22		205.22	0.000012	0.23	555.47	221.45	0.02
Ballinger Creek	251.15	25-Yr	80.57	201.43	205.37		205.37	0.000016	0.28	590.58	224.50	0.03
Ballinger Creek	251.15	100-Yr	114.97	201.43	205.56		205.56	0.000026	0.37	632.09	228.04	0.03

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Ballinger Creek	161.57	2-Yr	38.22	199.22	202.93		202.93	0.00008	0.15	295.63	184.70	0.02
Ballinger Creek	161.57	10-Yr	62.96	199.22	205.22		205.22	0.000001	0.10	771.05	233.57	0.01
Ballinger Creek	161.57	25-Yr	80.57	199.22	205.37		205.37	0.000002	0.12	808.03	236.60	0.01
Ballinger Creek	161.57	100-Yr	114.97	199.22	205.56		205.56	0.000004	0.16	851.67	240.13	0.01
Ballinger Creek	79.36	2-Yr	34.09	198.87	202.83	200.22	202.91	0.000861	2.17	15.69	35.78	0.19
Ballinger Creek	79.36	10-Yr	56.37	198.87	205.21	200.73	205.21	0.000070	0.78	176.92	141.78	0.06
Ballinger Creek	79.36	25-Yr	74.89	198.87	205.36	201.13	205.37	0.000103	0.96	198.84	143.56	0.07
Ballinger Creek	79.36	100-Yr	115.88	198.87	205.53	201.87	205.55	0.000200	1.37	223.71	145.56	0.09
Ballinger Creek	33		Culvert									
Ballinger Creek	0	2-Yr	34.09	196.37	197.83	197.83	198.49	0.033794	6.51	5.24	15.16	1.00
Ballinger Creek	0	10-Yr	56.37	196.37	198.22	198.00	198.37	0.007258	3.13	19.54	16.32	0.47
Ballinger Creek	0	25-Yr	74.89	196.37	198.45	198.00	198.64	0.007604	3.55	23.34	17.00	0.49
Ballinger Creek	0	100-Yr	115.88	196.37	198.87	198.21	199.15	0.008238	4.31	30.84	21.32	0.53
Ballinger Creek	-20	2-Yr	34.09	196.33	197.58	197.40	197.76	0.018222	3.41	10.29	14.43	0.68
Ballinger Creek	-20	10-Yr	56.37	196.33	197.85	197.65	198.12	0.018204	4.15	14.36	15.35	0.71
Ballinger Creek	-20	25-Yr	74.89	196.33	198.05	197.82	198.37	0.018205	4.64	17.36	15.92	0.73
Ballinger Creek	-20	100-Yr	115.88	196.33	198.41	198.16	198.86	0.018228	5.49	23.33	17.00	0.76

HEC-RAS Plan: Alt6-mod2 River: Ballinger Creek Reach: Ballinger Creek (Continued)

Appendix N Constructability Review

Draft Technical Memorandum

Shoreline Phase 1 – 25th Avenue NE Flood Reduction Project City of Shoreline Public Works Department Shoreline, Washington

Submitted to

Louis Berger Seattle, Washington

ORAFT

2 December 2016

Submitted by

BergerABAM 33301 Ninth Avenue South, Suite 300 Federal Way, Washington 98003

A16.0261.00, Task 171

DRAFT TECHNICAL MEMORANDUM SHORELINE PHASE 1 – 25th AVENUE NE FLOOD REDUCTION PROJECT SHORELINE DEPARTMENT OF PUBLIC WORKS SHORELINE, WASHINGTON

TABLE OF CONTENTS

SECTION

1.0	Introdu	uction	1
2.0	Alterna	atives	2
	2.1	Alternative 1	2
	2.2	Alternative 2	2
	2.3	Alternative 3	2
	2.4	Alternative 4	2
3.0	Constr	uctability	3
	3.1	Schedule	3
		3.1.1 In-Water Work Constraints	3
	3.2	Existing Drainage System	.4
	3.3	High Ground Water	5
	3.4	Potentially Contaminated Soil and Groundwater	6
	3.5	Utilities	7
	3.6	Local Buildings	8
	3.7	Walls	9
	3.8	Buried Culverts	11
	3.9	Existing Walls Along Ballinger Way NE	11
	3.10	Maintenance of Traffic	13
4.0	Summ	ary	15

LIST OF IMAGES

Image 1. WSDOT Wall and Culvert Outfall	. 13
---	------

LIST OF PHOTOS

Photo 1. Example of 3-Sided Open Channel	10
Photo 2. Culvert Outfall and Walls at NE 195th Street	12

1.0 INTRODUCTION

The City of Shoreline (City) is preparing a predesign study for the 25th Avenue NE Flood Reduction Project (project) to assess options to reduce flooding of Ballinger (West Lyon) Creek in the vicinity of 25th Avenue NE, NE 195th St, and Ballinger Way NE (State Route 104 [SR 104]). The study area includes portions of both cities of Shoreline and Lake Forest Park.

The study area is generally defined as the Ballinger Creek system from the southeast corner of Brugger's Bog Park to approximately 300 feet south of NE 195th Street. From the southeast corner of the park, the creek enters a 24-inch-diameter storm drain pipe system at the southeast corner of the park, crosses under 25th Avenue NE, and continues southward in 24-inch and 30-inch diameter pipes. A 24-inch diameter high flow bypass system runs parallel along the west side of 25th Avenue NE. Both pipes combine into a 36-inch by 48-inch corrugated metal pipe (CMP) arch just south of NE 195th Place. Ballinger Creek then daylights to a City of Shoreline drainage easement within private property and extends approximately 150 feet before entering a 36-inch by 48-inch CMP arch culvert crossing under NE 195th Street. The creek continues south along the east side of Ballinger Way NE within a large wetland.

BergerABAM is part of the design team and is tasked with providing a constructability review for the preferable conceptual alternatives being developed for the City's review. The following technical memorandum outlines the alternatives being considered and the constructability concerns that effect all or some of the alternatives. Based on the findings of this study and the requirement throughout to gain additional information, a preferred alternative recommendation is not included at this time. Cost is referred to throughout the document, but only in terms of a comparison between concepts considered. It is not intended that any cost inputs or comments developed to a level of detail that an estimate can be generated. This document is intended to assist the design team in furthering discussions on a preferred alternative.

2.0 ALTERNATIVES

The design team has evaluated multiple drainage alignments that could meet the City's goal of improving drainage in this area. Several concepts were evaluated by the design team and determined to be impractical from a construction, cost, or goal-achieving standpoint. Only the alternatives that may have merit for a final construction project were submitted to BergerABAM for review. The following alternative descriptions outline the differences in each.

2.1 Alternative 1

This alternative involves daylighting Ballinger Creek within the 25th Avenue NE rightof-way (ROW) and replacing the NE 195th Street Culvert. This alternative focuses on trying to keep most of the improvements on the west side of the ROW to avoid loss of parking (that occurs on the east side of the street) and also reduce the number of utility conflicts because of the large number of overhead utilities on the east side of the street. This option includes four new fish-passable box culverts in addition to the culvert replacement at NE 195th Street.

2.2 Alternative 2

This alternative is similar to Alternative 1; however the channel crosses 25th Avenue NE diagonally just north of NE 195th Place. From there, it runs along the east side of the road and crosses two driveways before daylighting into the existing channel north of NE 195th Street. This alternative focused on keeping the open channel on the west side of the ROW along the north maintenance facility and transitioning to the east side of the ROW at NE 195th Place to have shorter culverts (benefiting fish passage) and avoid having construction activities close to an existing building that was constructed on the west ROW line at 19518 25th Avenue NE for condominiums.

2.3 Alternative 3

This alternative will daylight the creek in the north maintenance facility property and transition to either Alternative 1 or Alternative 2 south of the facility. This alternative would only be feasible if the north maintenance site development does not move forward as currently envisioned, and if the City develops a future maintenance facility at an alternative location. If this were to be the case, the City-owned site could be used for storm drainage, park uses, and possibly mitigation for other City projects. It was assumed that this alternative would include floodplain storage and also fish habitat enhancements.

2.4 Alternative 4

BergerABAM proposes this fourth alternative to help mitigate utility conflicts at the east side of 25th Avenue NE near NE 195th Place. This option is similar to Alternative 2, with the exception that the crossing of 25th Avenue NE is shifted just south of the access driveway between the north maintenance facility and the building for condominiums. This alternative eliminates a conflict with one of the utility poles, located in the northeast quadrant of 25th Avenue NE and NE 195th Place.

3.0 CONSTRUCTABILITY

3.1 Schedule

3.1.1 In-Water Work Constraints

This project involves the installation of up to five box culverts, regrading of the existing Ballinger Creek, new channel construction, wall construction, and removal of the existing drainage conveyance system and roadway reconstruction. From a construction standpoint, it is desirable to perform the work during the drier months of April through mid-October. It is our assumption that any work at or below the ordinary high water mark will be subject to an in-water work window constraint. From our experience, these work windows range from one month to three to six months, depending upon the stream location. In checking with our in-house environmental staff, it is anticipated expected that the in-water work window will be from 1 July through 31 August, based on the creek being tributary to north Lake Washington. However, this needs to be verified by Louis Berger Group's environmental lead. From review of Alternatives 1 through 3, it is our opinion that the following work for any of the alternatives will be subject to an in-water work window.

- Stream regrading work of Ballinger Creek south of NE 195th Street
- Box Culvert Installation at NE 195th Street
- Stream Regrading of Ballinger Creek between 25th Avenue NE and NE 195th Street

For Alternative 1, the installation of the box culvert crossing 25th Avenue NE may be able to be done outside of an in-water work window. However, it may be difficult to install the east end of the box and associated headwalls without some creative construction sequencing, temporary isolation walls, and possible long-term diversion of the creek under the driveway. Channel construction upstream of that location could be done outside of the in-water window, since it is a new alignment not connected to the creek. The connections upstream and downstream, including headwalls, will take place during the in-water work window. A closer review of the creek hydraulics would be needed since this will also take the existing 24-inch high-flow bypass out of service, which is probably not desirable during the wet season.

For Alternative 2, the installation of two driveway culverts on the east side of 25th Avenue NE will more than likely be subject to an in-water work window. Installation of these box culverts will require diversion of the piped stream, which would trigger inwater work requirements. The installation of the culvert at the upstream connection of the box culvert at the north maintenance facility will be under the same timing as Alternative 1.

Alternative 3, which involves meandering the stream through the existing north maintenance facility, would involve all of the downstream constraints as Alternative 1 and 2. However, the stream work, site regrading, and installation of the south driveway

box culvert could be done outside of the in-water work window with the exception of the upstream channel tie-in. BergerABAM's proposed Alternative 4 is also similar to this.

Given the amount of overall contract work and in water constraints, it is not likely this project could be completed in one season. Any temporary or permanent utility relocation could be done ahead of construction to minimize the duration of the channel and roadway work. It is our opinion that the work would need to be phased over two seasons to allow successful completion of the project, given the environmental constraints. During the next phase of the project, we recommend producing conceptual construction schedules for the different alternatives to help better understand the merits or downside of each alternative schedule.

3.2 Existing Drainage System

From the southeast corner of the Bruggers Bog Park, Ballinger Creek enters a 24-inch diameter storm drain pipe system, crosses under 25th Avenue NE, and continues southward in 24- inch and 30-inch diameter pipes. A 24-inch diameter high-flow bypass system runs parallel along the west side of 25th Avenue NE. Both pipes combine into a 36-inch by 48-inch CMP arch just south of NE 195th Place. Ballinger Creek then daylights to a City of Shoreline drainage easement within private property and extends approximately 150 feet before entering a 36-inch by 48-inch CMP arch culvert crossing under NE 195th Street. The west high-flow bypass also collects offsite drainage near the south boundary of the north maintenance facility and the north boundary of the condominiums.

A drainage system also runs along the north side of Ballinger Way west of 25th Avenue NE and turns north onto 25th Avenue NE and runs along the west shoulder then crosses the street and outfalls adjacent to the outfall of the 36-inch by 48-inch CMP arch into Ballinger Creek.

There are no tie-ins from the east shown on the RFQ Project Area Map; however, this should be verified.

During construction, this system and side connections will need to be kept operational or bypassed. It is our opinion that using the existing system as the bypass is the most economical and has the least impact. A stream diversion will be required for the open channel regrading downstream of NE 195th Place and for the installation of the box culvert at NE 195th Street in all the alternatives.

Alternative 1 would allow the existing trunk line along the east side of 25th Avenue NE to remain operational during construction and serve as a bypass for work being done on the west side of the street. The high-flow bypass would be blocked at the upstream end, and the box culverts and open channel to the new crossing near the south end of the condominiums could be constructed. It is our opinion that the crossing of 25th Avenue

NE also could be constructed if temporary shoring and a diversion of the existing driveway culvert could be accommodated. The side drains between the north maintenance facility and condominiums could be temporarily diverted to the east trunk line or possibly tied into the new channel within a short period of time. The headwalls at the upstream and downstream box culverts could be installed by isolating the creek from the work area. If the high-flow bypass is taken out of service for an extended time, additional analysis may be needed to determine if a temporary bypass is needed during flood events. The box culvert headwalls at the crossing of 25th Avenue NE will also need to accommodate the existing pipe conveying stormwater from Ballinger Way.

Alternative 2 will require a temporary bypass of the existing 36-inch by 48-inch CMP, since the segment south of NE 195th Place will be replaced by two box culverts and a segment of open channel in the same alignment. Dependent upon flow, the diversion could be extensive, expensive, and time consuming to construct. Existing utilities may also present challenges in determining a route for a diversion pipe or channel.

Alternative 3 is similar to Alternative 1 or 2 downstream of the north maintenance facility. However, the high-flow bypass, or a large portion of it, could be left in service since the new channel meanders west of the existing pipe. The southern portion could be relocated east to facilitate construction of the box culvert between the north maintenance facility and condominiums. Since there is no box culvert or headwalls at the upstream tie in the Ballinger Creek, the cut over of the stream would be fairly simple and of short duration. Alternative 4 is a hybrid of the other three alternatives.

3.3 High Ground Water

The geotechnical report prepared by Terracon for the project shows that groundwater was observed around 2 feet below surface along 25th Avenue NE to approximately 5 feet to 7 feet below the surface at higher ground near NE 195th Street. The ground water elevations recorded in the report are from the drier months of June and July, so it will be a construction issue regardless of the time of the year the work is performed. The geotechnical report concludes that any excavations deeper than 2 feet below surface will require an intensive dewatering effort. The estimated rate of dewatering that may be required ranges from 60 gpm to 250 gpm. If the dewatering is on the high end, then disposal will need to be evaluated for the large quantity of dewatering that will be generated over a few months.

All of the alternatives will require dewatering to construct, particularly to install the culverts and the head walls. If the north maintenance facility is abandoned and utilized as a site to meander the stream and create flood storage, a thorough review of the ground water elevations and proposed grading will be needed. Proposed grading below the ground water elevation may require a more extensive dewatering plan since the area is fairly large. However, the extent of dewatering should be less for Alternative 3 since a portion of the day-lighted creek is proposed to be constructed on the north maintenance facility site and therefore does not require walls for this section

As the project is progressed to the next phase, it is recommended that the geotechnical engineer perform a pump test to help better understand the dewatering effort needed to draw the ground water down 2 feet below the lowest excavation. This will also aid in evaluating dispersal and or disposal options and potential settlement to adjacent structures. Because of settlement concerns, groundwater cutoff walls may be required as part of the dewatering plan.

3.4 Potentially Contaminated Soil and Groundwater

The geotechnical report document investigations conducted on existing site soils and groundwater for potential contamination. Oil and diesel hydrocarbons were detected in bore B-4, and elevated levels of arsenic were found in the groundwater at two of the groundwater monitoring wells at the north maintenance facility.

At bore B-4 the levels of oil and diesel hydrocarbons were below Model Toxic Cleanup Act (MTCA). The bore log notes state that at 3.3 feet below the surface, the soil had an oily feel and a hydrocarbon odor. This bore is located on 25th Avenue NE approximately 50 feet north of Ballinger Way. The material was tested and it is above detectable limits but below MTCA cleanup levels. However, the report states that during excavation additional area could be encountered that may be above MTCA levels. Given that the material felt oily and was detectable by smell, it is likely that higher levels may be encountered. Excavations near the intersection of 25th Avenue NE and Ballinger Way may encounter areas of contaminated soils and it is recommended that additional field investigation be performed as the design progresses to establish the probable perimeter of the potentially contaminated area.

The geotechnical report also discusses sampling of groundwater monitoring wells installed in the north maintenance facility. The total petroleum hydrocarbon (TPH) and volatile organic compounds (VOC) results were below the laboratory method reporting limits (MRLs). Arsenic was detected in both samples; one sample contained 5.7 ug/L, which is slightly above the 5 ug/L MTCA Method A cleanup level that is protective of groundwater as a potable drinking water source. The report states that this is likely due to the background levels of arsenic in the glacially-derived sediment, and does not appear to be an indication of the presence of contaminant released to the environment, based on the lack of other contaminants detected in the sample.

The known presence of these contaminates on a typical roadway project can be mitigated by including the soils and ground water information in the contract. The contract would also include specifications and payment vehicles to remove soils that are above MTCA cleanup levels and to also provide disposal methods for contaminated materials that are below MTCA cleanup levels. It has been our experience that these soils will also need to be disposed of at a permitted site, since most pits and waste sites have adopted a clean soils policy. In other words, if any contaminated material is detected, they will not receive it. However, this is a flood reduction and environmental project that includes a new stream channel adjacent the roadway and a potential regrading of the north maintenance facility to include a new meandering stream and new floodplain storage. The roadway work is a secondary component of this project. On a recent Pierce County wetland mitigation/stream realignment project that BergerABAM was involved in, contaminated materials were encountered during excavation of the wetland and stream. In consultation with regulatory agencies, and in particular the Department of Ecology, it was determined that all contaminated materials-regardless of whether they were below or above MTCA levels—with any potential for exposure to the stream or groundwater needed be removed until no detection of contaminants were obtained. In addition, any materials above MTCA levels, even if not exposed to groundwater, still needed to be removed. The responsibility to ensure all contaminates on the site were removed belong to Pierce County and the project, with oversite from the regulatory agency. This added substantial cost to the project and also added a groundwater monitoring plan for a minimum of one year. It is our recommendation that additional soil and groundwater testing be conducted in the area of proposed new channels for contaminants. It is also recommended that the project environmental engineer be consulted regarding the extent of contaminated soil, water removal, and treatment in areas where the new channel or floodplain grading is in an area of known contaminates, even if it is below MTCA cleanup levels.

A construction project similar to the City of Shoreline project was designed by BergerABAM, as described in the Wall section below. The high ground water and contaminated soils situation described herein were also part of that project. Our experience recognizes that a collaborative effort is essential for the design team especially the environmental, drainage, structural, and geotechnical engineers — to evaluate the alternatives and understand the potential impacts from contaminated soils and high ground water in regards to all the disciplines.

3.5 Utilities

The utilities on this project will need to be examined for easements or other encumbrances that would reveal the existence and location of water lines, conduits, sewer lines, drainage, or irrigation lines, etc. Easements that identify other affected ownerships should be considered. Easements and permits should be planned to accommodate activities outside of the right of way, if needed.

The ownership of the utilities, such as Seattle City Light, should be determined in order to make arrangements for necessary adjustments, including relocation of portions of the utility. Obligation of expenses should be considered for relocation and adjustments.

The overhead power lines on this project run on the east side of 25th Avenue NE. There are two affected power poles. These power poles have power, communication, and cable. It is assumed that the power and communication lines may have to be relocated, as the elevation and location of the lines may not allow for safe excavation. The pole

across the street from the condominiums has several risers. These risers take overhead power and communications down the pole into the ground. From there, the conduits run west under 25th Avenue NE into the condominiums. Any of the alternatives will require a rerouting or relocation of these conduits since the new channel crosses through them. As the project is progressed, options will need to be evaluated for temporary rerouting so as not to interrupt service to the condominiums.

Another critical utility that needs to be considered during evaluation of alternative improvements is a 66-inch-diameter steel waterline owned by SPU that runs along NE 195th Street. The existing culvert on 195th Street crosses directly underneath the 66-inch waterline. There is also a potential conflict with the existing waterlines on 25th Avenue NE. These lines will have to be located and possibly rerouted prior to excavation.

Alternative 1 plan is believed to have a moderate impact on the power lines. The excavation is primarily on the west side of 25th Avenue NE.

Alternative 2 plan is believed to have an extensive impact on the power lines. The excavation is on the same (east) side of the power lines.

Alternate 3 plan is believed to have a low impact on the power lines. The excavation is through the north maintenance facility property and along the existing building for condominiums.

Alternative 3.2.5 plan is believed to have a low/moderate impact on the power lines. The excavation is through the north maintenance facility property and a portion on the east side. Only one power pole will be affected.

3.6 Local Buildings

There are five general structural building locations along this project that will affect the constructability of the project. The first location is the north maintenance facility on the west side of 25th Avenue NE, on the north end of the project; Alternatives 1 and 2 run parallel with this property, and Alternative 3 runs through this property. This area will be affected in all the alternatives, and the construction techniques vary whether the creek runs along the side of the property or through it, but all are feasible. The second location is the school property on the east side of 25th Avenue NE, on the project's north end, and all the alternatives stay away from this property. The other three building groups are all residential, but with different configurations and impacts.

The local homes built away from 25th Avenue NE, on the west side, between the north maintenance facility and the existing building for condominiums, will have the creek located either under or adjacent to the driveway. In either case, there will be periods of construction where access to this residents is blocked. This is true whether the culvert runs perpendicular under the driveway or skewed to the driveway crossing 25th Avenue NE.

The local homes on the east side of 25th Avenue NE are affected more with Alternative 2, but will have significant impacts with any of the alternatives as the roadway sections are reconstructed and closures are required for the culvert crossing of 25th Avenue NE. Alternative 2 will require additional utility work, as discussed previously, as well as a longer section of the three-sided open channel adjacent to these residents.

The existing building at 19518 25th Avenue NE is for condominiums, and the structure is constructed on the west ROW line of the City property. This complicates the construction of the open three-sided channel in Alternative 1. Additional research is needed to understand the foundation type, size, and location relative to the channel. If possible, it will be beneficial to acquire the geotechnical recommendations for the building construction. This information will aid a geotechnical engineer in evaluating and providing recommendations for wall configurations adjacent to this structure to limit impacts on the building due to settlement. Most walls are designed to resist the lateral loads after the wall deflects enough to engage the passive resistance pressures that hold and stabilize the wall systems. This initial displacement is often acceptable for most transportation projects, but it may not be acceptable when supporting an existing building. The types of walls that are often used in building construction to limit displacements and settlements are soldier pile walls with permanent ground anchors or secant pile walls. These systems are relatively expensive compared with the other wall types proposed for this project and may be avoided with better information on the buildings design and foundation capacity. If it is determined the walls are placed far enough away from the existing building or that settlement of the building is not a concern, it will still be likely that a cantilever soldier pile wall is the only type of wall that can be built adjacent to this building.

3.7 Walls

Walls will be required to create the open channel stretches for all of the creek alignment alternatives. The roadway cross-sections require sidewalks, barriers and handrails, vehicular lanes, and even parking in several locations. There are four main cross-sections for this open channel. Open cuts can be used when the creek meanders through the north maintenance facility (Alternative 3 only) and in the open channel section downstream from NE 195th Place. Open cuts may also be used in in short stretches along 25th Avenue NE and along most of the residential side of the creek paralleling Ballinger Way NE. When walls are required, the type of wall will likely be controlled by construction access, whether open cuts can be made, and what is adjacent to the cut.

As discussed previously, all the walls constructed against the existing building for condominiums will likely be soldier pile or secant pile walls, possibly with permanent ground anchors. Other locations without room to lay back the soil to construct a spread footing for a cast-in-place (CIP) concrete retaining wall, or to lay in the reinforcing straps for a structural earth wall (SEW), will also require a soldier pile wall. SEW walls tend to be less expensive and can accelerate construction with the use of precast fascia panels, but they require the largest footprint for temporary cuts. CIP concrete cantilever walls

may utilize special designs to eliminate the heal of the footing and reduce the temporary excavation limits, but CIP concrete takes longer in the construction schedule to complete. All of these wall types will be considered and compared with precast three-sided (open top) culvert sections. There will be project constraints, such as ROW, movement of traffic (MOT), staging limits, utilities, existing structures, etc., that will make some wall types impractical.

An open three-sided channel is proposed along the edge of the north maintenance facility, adjacent to the existing building for condominiums in Alternative 1 and along the residential homes in Alternative 2. It is worth noting that a recent project in the City of Bothell, the Horse Creek Drainage Improvements Project, was designed by BergerABAM and uses several wall types to create an open channel similar to what is being proposed on this project (see Photo 1). The photos show how a traffic barrier and pedestrian fence/railing are used to protect the traveling public and how a vibrant environmentally friendly stream can meander in a dense urban environment.

Photo 1. Example of 3-Sided Open Channel

The walls for the Horse Creek project used sections of SEW wraps with precast panels in some areas, soldier pile cantilever walls with CIP fascia panels in others, and even some CIP cantilever concrete walls were the geometric constraints permitted. A geotechnical engineer will provide recommendations for what wall type are applicable on this project. The adjacent vehicular or building surcharges will also impact the wall selection. Oversized CIP roadway or sidewalk sections are required to transfer the impact forces of the barriers and railings to the wall system. These oversized reinforced roadway/sidewalk/curb sections are often referred to as moment slabs and are relatively

expensive to construct. The benefit of these moment slab sections it that they resist the vehicular impact forces on the barrier system, thus reducing the demand and size of structural walls needed and decrease the wall costs. The design loading for the vehicular barriers will be TL-2 loading, based on the local residential traffic using this project area, and this will allow for more aesthetically pleasing barrier shapes as seen in the photo above.

As discussed previously, some utilities will be required to cross these open channel sections. Where possible, these utilities should be routed around the walls. There may be some situations on this project where the utilities will have to be placed underneath the walls and channel, or even across the channel. Crossing the channel requires special coordination with the utility owner and the City to develop a plan that protects the utilities, make the crossing aesthetically pleasing, and ensure safety.

3.8 Buried Culverts

The culverts are assumed to be precast sections with water stops and wraps, as required. This construction methodology is selected to accommodate the high water tables, deep excavations, narrow work areas, and short construction windows where the creek channel is directly impacted (in-water work windows). Where possible, CIP construction may be used, as it is often less expressive than precast, though it takes additional construction time. Several of the driveway locations may utilize the lid of the culvert as the driving surface, or with shallow soil cover, however, this type of construction is not recommended for street crossings with heavier Average Daily Traffic (ADT). There is also an alternative design that utilizes the wall of a three-sided channel to support a driveway slab bridge, but only if a robust wall system is already planned for the driveway location. Headwalls will be required at all the culvert locations, and special details will be required to match the various channel sections that will likely be part of this project. The skewed crossings will also impact the phasing of the road closures. It is recommended that a full closure be used during construction of the culverts under both the 25th Avenue NE and NE 195th Street locations. To accommodate the in-water work windows for this project, both of these closures will likely occur at the same time. See the Maintenance of Traffic Section for more information.

See the Wall Section for a discussion on open top creek channels. These sections are often considered an open culvert and are designed structurally in a similar manner to box culverts in some situations.

3.9 Existing Walls Along Ballinger Way NE

The culvert at NE 95th Street is to be replaced, in all the alternatives, with a 10-foot-wide by 3.5-foot-deep concrete box culvert. The invert profile of the creek channel is being lowered to clear under an existing 66-inch steel waterline that extends along NE 95th Street. There is currently a failing WSDOT gabion basket wall that extends a long way down the creek and supports Ballinger Way NE. A recent project, completed by WSDOT in early 2016, replaced a portion of the gabion wall at the Ballinger Creek and NE 195th Street culvert outlet that had failed. Excessive material piping occurred in between the gabion wall and the NE 195th Street roadway embankment such that a vertical face of the roadway embankment was completely exposed. The City coordinated with WSDOT on the design and provided input so that the replacement wall could more easily accommodate a future NE 195th Street culvert replacement designed and meet the Washington Department of Fish and Wildlife (WDFW) fish passage criteria. WSDOT completed emergency repairs in October 2016. The replacement wall utilizes drilled soldier pile shafts and steel plates for lagging to straddle the existing culvert and accommodate the future concrete box culvert as seen in Photo 2.

Photo 2. Culvert Outfall and Walls at NE 195th Street

The proposed profile for all the alternatives lowers the culvert depth at NE 195th St. The lowering of the culvert and proposed culvert size will present some major challenges to the City's project because the channel immediately downstream of the culvert has aggraded (raised) the creek bed. The lowered profile will require channel excavation and grading along a significant length of the failing WSDOT gabion basket wall. The three survey lines shown in Photo 2 are recommended to better understand the culvert construction and creek grading impacts on the current channel and walls adjacent to the culvert. Additional survey cross-sections are also recommended further down the creek alignment. The excavation, permanent side slope grade, and temporary construction cuts will have a significant impact on the failing gabion walls. Moving the creek alignment away from the wall may allow the gabion wall repair to be accomplished under a separate WSDOT project, but will add complications with ROW and the newly installed soldier pile wall.

Image 1 is taken from the WSDOT contract for the wall construction (soldier pile type, size, and location need to be verified) and modified to represent the current plan for the new box culvert location. This image shows the approximate amount of excavation required to construct the new box culvert. It also shows the overall geometry of the outfall location with regard to creek alignment and wall location.

Image 1. WSDOT Wall and Culvert Outfall

The existing rockery near the outfall of the 25th Avenue NE pipe system is over steepened, and it was noted that a few rocks have been dislodged from the slope. Consideration should be given to replacing a portion of the rockery with an extension of the soldier pile wall where it is over steepened and adjacent to the creek. Depending on the permanent slope, easements, construction methods, and final creek alignment, an additional extension of the soldier pile wall may be needed on the opposite side of the creek from the failing gabion wall.

3.10 Maintenance of Traffic

Some of the work zone safety and mobility areas to consider on this project are as follows.

- Accommodations for pedestrian and bicycle traffic
- Consideration for schools, emergency services, and postal delivery
- Parking for the 25th Avenue NE residents
- Work vehicles and equipment in work area

- Notices to residents and businesses
- Driveway access for local residents
- One lane closures on 25th Avenue NE, NE 195th Street, and possibly Ballinger Way
- Staging area for equipment and materials

A short-term stationary work zone should be considered. This work will occupy a location for more than one hour within a single day. At these locations, all devices are placed and removed during the single period, although, "No Parking" signs may need to remain for the duration of the project.

A one-lane closure with a flagger at each end can control work activities at the north end of 25th Avenue NE, or where permitted elsewhere. When the work activities move closer to the intersection, consider a combination of law enforcement and flaggers. Onelane closures on 25th Avenue NE and NE 195th Street may be needed during excavation of the side channels. A one-lane closure may be needed to build the wall on Ballinger Way. In all alternatives, full road closures on 25th Avenue NE and NE 195th Street may be necessary to excavate the culverts.

Depending on which alternative will be used, impacts on street parking will be low to extensive. The driveways need to remain open and maintained for the duration of the project. Limited closures may need to be negotiated with the local residents. It is not known at this time if there are other entrances that can be used for the north maintenance facility and local residents.

If the excavation allows for narrower lanes, two lanes can remain open with proper channelization devices. The lanes can also be shifted onto the shoulders if the existing catch basins allow traffic loads or if those catch basins are modified.

Alternative 1 will have a moderate impact on traffic. The work is in the shoulder in front of the north maintenance facility, the residents further back, and along the building for condominiums. The wall type selected may increase the impacts to Traffic if extra excavation is required into 25th Avenue NE. The driveways will have to remain open and maintained as much as practical. The street parking on the west side cannot remain open during construction if deemed unsafe. The street parking on the east side will have minimal impacts, unless this area is utilized by the contractor for staging equipment and materials.

Alternative 2 will have an extensive impact on traffic. The driveways for the north maintenance facility and residents on the east side of 25th Avenue NE will have to remain open and maintained as much as practical. The driveway access and street parking on the west side will have to be closed for an extended period of time.

Alternative 3 will reduce some of the impacts on traffic. The excavation through the north maintenance facility will not impact 25th Avenue NE. The work south of the north

maintenance facility will be similar to Alternative 1. Alternative 4 is a hybrid of the other three alternatives.

4.0 SUMMARY

The constructability review identified questions that still need to be vetted in most of the areas discussed. Recommendations for the design team to consider while moving forward with the development of this project are included throughout this memorandum, but no recommendations for a preferred alternative or specific construction methodology is made at this time.

DRAFT
Appendix O Storm Pipe (CCTV) Inspection Reports

101-

A.

City : Shoreline

Innovac 20909 70th Ave W Edmonds, WA 98026 Tel: 206-.783.3317 Fax: 206.783.9109

NE 195th St & SR 104 Storm Culvert // Page: 1

City : Shoreline

Innovac 20909 70th Ave W

	Incod			
City : Shoreline	Street : 2518 NE 195th ST	Date :	Pipe Segment Reference : SP-9319	Section No : 1
	2518 NE 195th ST Shor PT-7 Downstream PT-26	eline		
	24 Corrugated Metal P	ipe 10/21/2016	and the second state	
	4.00 rt 0.00 m 2016-10-21	24 Car	فشقتك وبهوم	
	Photo: PI-7FT-26824102016_06584 4FT, Hole Soil Visible, from 04 to 08	5.jpg o'clock, within 8 inc	hes of joint: YES, Start	
	2518 NE 195th ST Shor PI-7 Downstream FT-26 24 Corrugated Metal P	eline 8 ipe 10/21/2016		
	and a second second second second second second second second second second second second second second second	and a start of the start of	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
	59.85 ft 0.00 m 2016-10-21			

					PACF	9 Sewe	r Repor	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage Ar	ea:	SI	neet Number:
Work order:	Pipeline Segmer SP-1973	nt Ref:	Sta 20	nt date/time: 14/05/13	09:44	Street: 19824 25th	n Ave NE			_{City:} Shorelin	е	
Location detai	ls:					Upstream manh CB-3313	nole No:		Rim to	o invert:	Grade to invert:	Rim to grade:
Downstream r CB-3312	manhole No:			Rim to inv	ert:	Grade to invert	: Rim to gr	rade: S	Sewer use:	Direction: D	Flow Contr	ol: Height: 30
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 171.9	surveyed:)	Year Laid:	Year rer	newed:	Media Label:
Purpose: 9	Sewer Category: F	Pre-Cleaning Dat	e Cleaned:	Weather:	Location Code	e: Additional	l info:					
		N		1		SP-197	73					
Starting	access point:	Easting:		1 Northin	ng:	SP-197	73 Elevation:		Coordinate sy	stem:	GPS accurac	y:
Starting Grade	access point: Amount of Structure Defects	Easting: Structural Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	SP-197 Amount of O&M Defects	73 Elevation: O&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structure Defects	N Easting: Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	73 Elevation: 0&M Segment Grade 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	ostem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade 1 2	access point: Amount of Structure Defects 0 0	Easting: Easting: Structural Segment Grade 0 0 0	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of 0&M Defects 0 17	73 Elevation: O&M Segment Grade 0 34	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	Amount of Structura Defects	N Easting: Structural Segment Grade 0 0 0 6	Structural Pipe Rating	1 Northin Structural Quick Rating 5132	ng: Structural Pipe Rating Index 3.6666667	SP-197 Amount of 0&M Defects 0 17 2	73 Elevation: O&M Segment Grade 0 34 45	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 3B2B	o&M Pipe Rating Index 2.46875	GPS accurac Over Overall Pipe Rating 90	y: all Pipe Overall Pipe Rating Index 2.571429
Starting Grade 1 2 3 4	access point: Amount of Structura Defects 0 0 2 0	Easting: Structural Segment Grade 0 0 0 6 0	Structural Pipe Rating	1 Northin Structural Quick Rating 5132	ng: Structural Pipe Rating Index 3.6666667	SP-197 Amount of 0&M 0 17 2 0	73 Elevation: O&M Segment Grade 0 0 34 45 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 3B2B	ostem: O&M Pipe Rating Index 2.46875	GPS accurac Over Overall Pipe Rating 90	y: all Pipe Overall Pipe Rating Index 2.571429

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-3313	SP-1973	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	V Inches	alue (mm)	%	Joint	Circum Loc	nferential cation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	12	ACB												CB-3313
0.0	28	MWL					20							
14.6	92	IS	S01						3	9				defect wanders
14.9	128	OBR	S02				10		5	7		O&M	2	
44.2	250	IS	F01						3	9				
80.0	292	OBR	F02				10		5	7		O&M	2	
83.4	384	DAE					5		3	6		O&M	2	
83.5	395	IW							3	6		O&M	2	
101.9	466	OBR	S03				10		5	7		O&M	2	
103.8	495	IW							4	8		O&M	2	
123.0	568	Н							9			S	3	
123.1	581	ID							8			O&M	3	
128.9	621	IW							3	9		O&M	2	
140.9	670	Н							12			S	3	
140.9	685	D					15					S	5	
171.9	823	ACB												CB-3312
171.9	836	OBR	F03				15		5	7		O&M	3	

					PACP	Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage A	rea:	S	neet Number:
Work order:	Pipeline Segme SP-1980	nt Ref:	Sta 20	nt date/time: 14/05/13	12:11	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-9171	ole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream r CB-2700	nanhole No:			Rim to inv	ert:	Grade to invert	Rim to gr	ade: S	Sewer use:	Direction: U	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length s	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additional SP-198	info: 30					
Starting	access point:	Easting:		Northin	ng:		Elevation:		Coordinate sy	ystem:	GPS accurac	y :
Grade	Amount of Structura Defects	Structural al Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratin	ig O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
1	0	0				0	0					
2	0	0				2	4					
3	0	0	4	4100	4	1	3	7	3122	2.333333	11	2.75
4	1	4				0	0					
-	•						0					

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-9171	SP-1980	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	16	ACB												CB-2700
0.0	31	MWL					5							
13.4	69	D					5					S	4	small dent
20.6	103	IW							5	7		O&M	2	
80.7	257	IW							3	9		O&M	2	
101.3	354	TBI			8	5			8			O&M	3	
121.4	451	ACB												CB-9171

					PACF	^o Sewe	r Repor	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate No 03-2109	0:	Owner:			Survey Customer		Drainage Ai	rea:	S	heet Number:
Work order:	Pipeline Segmer SP-1991	nt Ref:	Sta 20	rt date/time: 14/05/09	13:19	Street: 19824 25tł	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-544	nole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream r CB-9537	nanhole No:			Rim to inv	ert:	Grade to invert	: Rim to g	ade: S	Gewer use:	Direction: U	Flow Cont	rol: Height: 18
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 111.2	surveyed: 2	Year Laid:	Year re	newed:	Media Label:
Purpose:	Catagamy C	Due Cleanine Det										
ruipose.		N	e Cleaned:	Weather: 1	Location Code	e: Additional	91					
Starting	access point:	Easting:	e Cleaned:	Weather:	Location Code	e: Additional	l info: 91 Elevation:		Coordinate sy	rstem:	GPS accura	-y:
Grade	access point: Amount of Structura Defects	Easting: Structural Segment Grade	e Cleaned: Structural Pipe Rating	Weather:	Location Code	e: Additional SP-199 Amount of O&M Defects	Elevation:	O&M O&M Pipe Ratin	Coordinate sy ng O&M Quick Rating	vstem: O&M Pipe Rating Index	GPS accurat Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Grade	access point: Amount of Structure Defects	Easting: Structural Structural Segment Grade	e Cleaned: Structural Pipe Rating	Weather:	Location Code	e: Additional SP-199 Amount of O&M Defects 0	Elevation: 0&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy Ig O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurat Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structure Defects 0 0	Easting: Structural Segment Grade	e Cleaned: Structural Pipe Rating	Weather:	Structural Pipe Rating Index	e: Additional SP-199 Amount of O&M Defects 0 7	Elevation: 0&M Segment Grade 0 14	O&M O&M Pipe Ratin	Coordinate sy	rstem: O&M Pipe Rating Index	GPS accurate Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	access point: Amount of Structure Defects 0 0 0	Easting: Structural Structural Segment Grade	e Cleaned: Structural Pipe Rating 0	Weather: 1 Northin Structural Quick Rating 00000	Location Code ng: Structural Pipe Rating Index 0	e: Additional SP-199 Amount of O&M Defects 0 7 11	Info: D1 Elevation: O&M Segment Grade 0 14 33	O&M O&M Pipe Ratin	Coordinate sy ng O&M Quick Rating 423A	rstem: 0&M Pipe Rating Index 2.75	GPS accurate Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index 2.75
Starting Grade 1 2 3 4	access point: Amount of Structure Defects 0 0 0 0 0 0 0 0	Easting: Structural Structural Segment Grade 0 0 0 0 0	e Cleaned: Structural Pipe Rating 0	Weather: 1 Northir Structural Quick Rating 0000	Structural Pipe Rating Index	e: Additional SP-199 Amount of O&M Defects 0 7 11 2	Elevation: 0&M Segment Grade 0 14 33 8	O&M O&M Pipe Ratin	Coordinate sy ng O&M Quick Rating 423A	rstem: 0&M Pipe Rating Index 2.75	GPS accurate Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index 2.75

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/09	CB-544	SP-1991	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	V Inches	alue (mm)	%	Joint	Circum	nferential cation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	12	ACB												CB-9537
0.0	28	MWL					5							
10.7	56	IS							3	6				
11.7	74	DSGV	S01				20		5	7		O&M	3	
21.5	132	IW							2			O&M	2	
21.5	138	DAE					5		2	6		O&M	2	
30.2	212	IW							3	9		O&M	2	
50.5	281	IR							3	9		O&M	4	
54.2	315	DSGV	F01				20		4	8		O&M	3	
70.4	398	ID							2	10		O&M	3	
70.4	415	DAE					5		2	10		O&M	2	from inflow
90.6	527	IR							2	10		O&M	4	
94.4	572	DSGV					10		5	7		O&M	2	
111.0	638	ТВА			8				3					
111.0	648	TBI			8	5			3			O&M	3	
111.0	686	IW							6	10		O&M	2	
111.0	698	DAE					5		6	10		O&M	2	from inflow
111.2	774	MSA												Due to intruding lateral

					PACF	9 Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate No 03-2109	0:	Owner:			Survey Customer		Drainage Ai	rea:	S	heet Number:
Work order:	Pipeline Segmer	nt Ref:	Sta 20	rt date/time: 14/05/13	11:56	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-2701	ole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream n CB-9172	nanhole No:			Rim to inv	ert:	Grade to invert:	Rim to gr	ade: S	Gewer use:	Direction: D	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 71.1	surveyed:	Year Laid:	Year rer	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Date	e Cleaned:	Weather:	Location Code	e: Additional	info:					
		N		1		SP-290	8					
Starting	access point:	Easting:		1 Northin	ng:	SP-290	8 Elevation:		Coordinate sy	/stem:	GPS accurac	:y:
Starting Grade	access point: Amount of Structura Defects	Easting: Structural al Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of 0&M Defects	08 Elevation: O&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	ry: rall Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structura Defects	Easting: Structural Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of 08M Defects	08 Elevation: O&M Segment Grade 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	ry: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2	access point: Amount of Structure Defects 0 0	Easting: Structural Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	08 Elevation: O&M Segment Grade 0 8	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	access point: Amount of Structure Defects 0 0 2	Easting: Easting: Structural Structural Segment Grade 0 0 0 6	Structural Pipe Rating	1 Northin Structural Quick Rating 5232	ng: Structural Pipe Rating Index 4	SP-290 Amount of O&M Defects 0 4 1	08 Elevation: O&M Segment Grade 0 8 8 3	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 3124	vstem: O&M Pipe Rating Index 2.2	GPS accurac Over Overall Pipe Rating 27	ry: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2 3 4	access point: Amount of Structure Defects 0 0 2 0	Easting: Easting: Structural Structural Segment Grade 0 0 0 6 0	Structural Pipe Rating	1 Northin Structural Quick Rating 5232	ng: Structural Pipe Rating Index 4	Amount of O&M Defects 0 4 1 0	08 Elevation: O&M Segment Grade 0 8 3 3 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 3124	ostem: O&M Pipe Rating Index 2.2	GPS accurac Over Overall Pipe Rating	ay: Tall Pipe Overall Pipe Rating Index

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-2701	SP-2908	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	V. Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	43	АСВ												CB-2701 is not a catch basin - it is a hole cut in top of pipe with a lid on it
0.0	49	MWL					10							
1.8	83	IW							3	6		O&M	2	
16.1	147	HSV							2			S	5	
17.0	186	IW							6	9		O&M	2	
17.3	209	В							9			S	3	
22.3	270	IW							8			O&M	2	
22.3	277	DSZ					20		4	8		O&M	3	storm solids and sticks
32.0	335	RPP							12	2				broken pipe covered with metal patch
43.7	416	D					15					S	5	dent in pipe
44.7	446	Н							12			S	3	3 small holes in dented area of pipe
62.2	516	IW							8			O&M	2	
71.1	572	ACB												CB-9172

					PACP	9 Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage A	rea:	S	heet Number:
Work order:	Pipeline Segme SP-3773	nt Ref:	Sta 20	art date/time: 14/05/13	11:47	Street: 19824 25tł	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-2700	nole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream r CB-2701	nanhole No:			Rim to inv	ert:	Grade to invert	: Rim to gr	ade: S	Sewer use:	Direction: D	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additional	l info: 73					
Starting	access point:	Easting:		Northi	ng:		Elevation:		Coordinate sy	ystem :	GPS accurac	:y:
Grade	Amount of Structura Defects	Structural al Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratir	ng O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
1	0	0				0	0					
2	0	0				2	4					
	0	Ŭ										
3	0	0	0	0000	0	0	0	4	2200	2	4	2
3 4	0	0	0	0000	0	0	0	4	2200	2	4	2

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-2700	SP-3773	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	11	ACB												CB-2700
0.0	23	MWL					5							
20.3	74	IW							3	6		O&M	2	
40.4	135	IW							4	8		O&M	2	
58.4	215	АСОМ												CB-2701 is not a catch basin - it is a hole cut in top of pipe with a lid on it

					PACP	Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage A	rea:	S	neet Number:
Work order:	Pipeline Segme SP-3783	nt Ref:	Sta 20	nt date/time: 14/05/13	10:18	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	s:					Upstream manh CB-3312	ole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream n	nanhole No:			Rim to inv	ert:	Grade to invert:	Rim to gr	ade: S	Sewer use:	Direction: D	Flow Contr	ol: Height: 30
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length s	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additional	info: 33					
Starting	access point:	Easting:		Northin	ng:		Elevation:		Coordinate sy	ystem:	GPS accurac	y:
Grade	Amount of Structura Defects	Structural al Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratir	ng O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
1	0	0				0	0					
2	0	0				5	10					
3	7	21	21	3700	3	0	0	10	2500	2	31	2.583333
4	0	0				0	0					
5	0	0				0	0					

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-3312	SP-3783	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	V: Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	12	ACB												CB-3312
0.0	25	MWL					10							
2.0	157	SCP	S02						4	8		S	3	
2.4	67	OBR	S01				10		4	8		O&M	2	
24.9	134	OBR	F01				10		4	8		O&M	2	
39.3	298	SCP	F02						4	8		S	3	
39.3	305	AMH												MH-59

					PACP	9 Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage A	rea:	SI	heet Number:
Work order:	Pipeline Segme SP-4677	nt Ref:	Sta 20	art date/time: 14/05/13	11:24	Street: 19824 25tł	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-9172	ole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream r MH-59	nanhole No:			Rim to inv	ert:	Grade to invert	Rim to gr	ade: S	Sewer use:	Direction: U	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additional	info: 77					
Starting	access point:	Easting:		Northin	ng:		Elevation:		Coordinate sy	/stem:	GPS accurac	y:
Grade	Amount of Structura Defects	Structural al Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratir	ng O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
1	0	0				0	0					
2	0	0				0	0					
							-	^	0000		100	1
3	12	36	96	5A3A	4	2	6	6	3200	3	102	3.923077
3 4	12 0	36 0	96	5A3A	4	2 0	6 0	6	3200	3	102	3.923077

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-9172	SP-4677	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	16	АМН												MH-59
0.0	36	MWL					15							
2.0	60	D	S01				15					S	5	Oval
2.0	85	SCP	S02						4	8		S	3	
2.0	134	DAE					15		4	8		O&M	3	
28.6	250	ОВМ					15		5	7		O&M	3	piece of concrete pipe
62.1	461	D	F01				15					S	5	Oval
62.1	461	SCP	F02						4	8		S	3	
62.2	428	ACB												CB-9172

					PACF	9 Sewe	r Report	-				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage Ar	ea:	S	neet Number:
Work order:	Pipeline Segmer SP-4679	nt Ref:	Sta 20	rt date/time: 14/05/13	12:29	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh	ole No:		Rim to	o invert:	Grade to invert:	Rim to grade:
Downstream r CB-9171	nanhole No:			Rim to inv	ert:	Grade to invert:	Rim to gr	ade: S	Sewer use:	Direction: U	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length s	surveyed:	Year Laid:	Year rei	newed:	Media Label:
Purpose: S	Sewer Category: F	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Cod	e: Additional SP-467	info: 79					
Starting	access point:	Easting:		Northin	ng:		Elevation:	1	Coordinate sy	stem:	GPS accurac	y:
Grade	Amount of Structura Defects	Structural I Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
Grade 1	Amount of Structura Defects 0	Structural Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	0&M Segment Grade	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
Grade 1 2	Amount of Structure Defects 0 1	Structural Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects 0 0	O&M Segment Grade 0 0	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
Grade 1 2 3	Amount of Structure Defects 0 1 0	Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating 2100	Structural Pipe Rating Index	Amount of O&M Defects 0 0 0	O&M Segment Grade 0 0 0 0	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating 2	all Pipe Overall Pipe Rating Index
Grade 1 2 3 4	Amount of Structure Defects 0 1 0 0 0	Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating 2100	Structural Pipe Rating Index	Amount of O&M Defects 0 0 0 0 0	O&M Segment Grade O O O O O O O O	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index 0	Over Overall Pipe Rating 2	all Pipe Overall Pipe Rating Index

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	NC-252	SP-4679	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	15	ACB												CB-9171
0.0	32	MWL					5							
21.7	83	CL							12			S	2	
46.8	164	AEP												NC-252 open ditch

					PACF	9 Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate No 03-2109	0:	Owner:			Survey Customer		Drainage Ar	ea:	S	neet Number:
Work order:	Pipeline Segme SP-7051	nt Ref:	Sta 20	nt date/time: 14/05/13	09:27	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh CB-9537	ole No:		Rim to	o invert:	Grade to invert:	Rim to grade:
Downstream n CB-3313	nanhole No:			Rim to inv	ert:	Grade to invert:	Rim to gr	ade: S	Gewer use:	Direction: U	Flow Contr	ol: Height: 24
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 96.6	surveyed:	Year Laid:	Year rer	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Data	e Cleaned:	Weather:	Location Code	e: Additional	info: 51					
							-					
Starting	access point:	Easting:		Northin	ng:		Elevation:		Coordinate sy	stem:	GPS accurac	y:
Starting Grade	access point: Amount of Structura Defects	Easting: Structural al Structural Segment Grade	Structural Pipe Rating	Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	Elevation: O&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	stem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structure Defects 0	Easting: Structural Segment Grade	Structural Pipe Rating	Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	Elevation: O&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy	stem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade 1 2	access point: Amount of Structure Defects 0 0	Easting: Structural Segment Grade	Structural Pipe Rating	Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects 0 4	Elevation: O&M Segment Grade 0 8	O&M O&M Pipe Ratin	Coordinate sy	stem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	access point: Amount of Structure Defects 0 0 0 0	Easting: Structural Segment Grade	Structural Pipe Rating	Northin Structural Quick Rating	ng: Structural Pipe Rating Index 0	Amount of O&M Defects 0 4 0	Elevation: O&M Segment Grade 0 8 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 2400	stem: O&M Pipe Rating Index 2	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index 2
Starting Grade 1 2 3 4	access point: Amount of Structura Defects 0 0 0 0 0	Easting: Structural Segment Grade	Structural Pipe Rating	Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects 0 4 0 0 0	Elevation: O&M Segment Grade 0 8 0 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 2400	stem: O&M Pipe Rating Index 2	GPS accurac Over Overall Pipe Rating	y: all Pipe Overall Pipe Rating Index

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	CB-9537	SP-7051	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	14	ACB												CB-3313
0.0	25	MWL					15							
7.2	83	IS							8					
38.9	195	IW							8			O&M	2	
55.2	248	IW							4	8		O&M	2	
64.0	293	ТВА			6				2					
64.1	310	DAE					10		3	6		O&M	2	
81.5	380	OBR					10		5	7		O&M	2	
96.6	459	ACB												CB-9537

					PACP	9 Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage A	rea:	S	neet Number:
Work order:	Pipeline Segme SP-7062	nt Ref:	Sta 20	nt date/time: 14/05/13	10:50	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh MH-59	ole No:		Rim t	o invert:	Grade to invert:	Rim to grade:
Downstream n MH-342	nanhole No:			Rim to inv	ert:	Grade to invert:	Rim to gr	ade: S	Gewer use:	Direction: D	Flow Contr	ol: Height: 36
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 104.6	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: S	Sewer Category:	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additional	info: 52					
Starting	access point:	Easting:		Northin	ng:		Elevation:		Coordinate sy	ystem:	GPS accurac	y:
Grade	Amount of Structura Defects	Structural al Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratir	ig O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index
1	0	0				0	0					
2	0	0				0	0					
3	0	0	100	5C00	5	0	0	0	0000	0	100	5
4	0	0				0	0					
5	20	100				0	0					

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	MH-59	SP-7062	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	11	АМН												MH-59
0.0	27	MWL					15							
4.5	81	D	S01				15					S	5	Oval
104.0	439	D	F01				15					S	5	
104.6	396	ACB												MH-342

14023 131st St E Orting, Washington 98360 PO Box 428 Sumner, Washington 98390 Phone: (253) 848-5250

					PACF	P Sewe	r Repor	t				
Surveyed by: John Bren 253-405-3	t 1592	Certificate N 0602141	o: .4	Owner:			Survey Customer		Drainage ar	ea:	S	heet number:
Work order:	Pipeline segmer SP-8485	nt ref:	Sta 20	nt date/time: 14/07/25	08:24	Street: 2502 NE 19	95TH PL			City: SHOREL	INE	
Location detai	ls:					Upstream manh FIELD	ole No:		Rim to	o invert:	Grade to invert:	Rim to grade:
Downstream n CB-3312	nanhole No:			Rim to inv	ert:	Grade to invert	Rim to gr	rade: S	Sewer use:	Direction: U	Flow contr	ol: Height: 12
Width: 24	Shape: O	Material: CMP	Ln. method:	Pipe joint l	ength:	Total length:	Length 9.6	surveyed:	Year laid:	Year re	newed:	Media label:
Purpose: S	Sewer category: F	Pre-cleaning Dat	e cleaned:	Weather:	Location code	e: Additional	info:					
		N		1		SP-848	35					
Starting	access point:	Easting:		1 Northir	ng:	SP-848	35 Elevation:		Coordinate sy	vstem:	GPS accurat	cy:
Starting Grade	access point: Amount of Structura Defects	Easting: Structural Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	Elevation: O&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurad Ove Overall Pipe Rating	ry: rall Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structura Defects	N Easting: Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	B5 Elevation: O&M Segment Grade 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	ostem: O&M Pipe Rating Index	GPS accurad Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2	Amount of Structure Defects 0 0	Easting: Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index	Amount of O&M Defects	Elevation: O&M Segment Grade 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	rstem: O&M Pipe Rating Index	GPS accurad Ove Overall Pipe Rating	rall Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	Amount of Structure O 0 0 0 0	Easting: Easting: Structural Segment Grade 0 0 0 0	Structural Pipe Rating	1 Northin Structural Quick Rating	ng: Structural Pipe Rating Index 0	Amount of O&M Defects	S5 Elevation: CO&M Segment Grade 0 0 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 00000	ostem: O&M Pipe Rating Index 0	GPS accurate Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2 3 4	Amount of Structure Defects 0 0 0 0 0 0	Easting: Easting: Structural Segment Grade 0 0 0 0 0 0 0	Structural Pipe Rating	1 Northin Structural Quick Rating 0000	ng: Structural Pipe Rating Index 0	Amount of O&M Defects 0 0 0 0	S5 Elevation: O&M Segment Grade 0 0 0 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 00000	rstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index

14023 131st St E Orting, Washington 98360 PO Box 428 Sumner, Washington 98390 Phone: (253) 848-5250

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline segment ref:	Sheet number:
John Brent		2014/07/25	FIELD	SP-8485	
253-405-1592					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	19	ACB												CB-3312
0.0	41	MWL					10							
9.6	57	MMC												СМР ТО СР
9.6	57	MSA												UNABLE TO COMPLETE DUE TO MATERIAL CHANGE

					PACF	^o Sewe	r Report	t				
Surveyed by: Josh Grav 405-1048	es 253	Certificate N 03-2109	0:	Owner:			Survey Customer		Drainage Ar	rea:	S	heet Number:
Work order:	Pipeline Segmer SP-9016	nt Ref:	Sta 20	art date/time: 14/05/13	11:06	Street: 19824 25th	n Ave NE			_{City:} Shorelin	e	
Location detai	ls:					Upstream manh MH-342	nole No:		Rim to	o invert:	Grade to invert:	Rim to grade:
Downstream r JO5323	nanhole No:			Rim to inv	ert:	Grade to invert	: Rim to gr	rade: S	Gewer use:	Direction: D	Flow Contr	rol: Height: 36
Width:	Shape: C	Material: CMP	Ln. Method:	Pipe Joint	Length:	Total length:	Length 62.0	surveyed:	Year Laid:	Year re	newed:	Media Label:
Purpose: 0	Sewer Category:	Dra Classing Dat		Marthe and	La satisar Card							
rurpose.		N	e Cleaned:	1	Location Cod	e: Additional SP-901	L6					
Starting	access point:	Easting:	e Cleaned:	Northin	ng:	e: Additiona SP-901	Elevation:		Coordinate sy	/stem:	GPS accurac	-y:
Grade	access point: Amount of Structura Defects	Easting: Structural Segment Grade	e Cleaned: Structural Pipe Rating	Structural Quick	Structural Pipe Rating Index	e: Additiona SP-901 Amount of O&M Defects	Elevation:	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	vstem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Grade	access point: Amount of Structura Defects	Easting: Structural Segment Grade	e Cleaned: Structural Pipe Rating	Northin Structural Quick Rating	Structural Pipe Rating Index	e: Additiona SP-901 Amount of O&M Defects 0	Elevation: 0&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	/stem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade	access point: Amount of Structura Defects 0 0	Easting: Structural Segment Grade	e Cleaned: Structural Pipe Rating	Structural Quick	Structural Pipe Rating Index	e: Additional SP-901 Amount of O&M Defects 0 0	Elevation: 0&M Segment Grade 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	/stem: O&M Pipe Rating Index	GPS accurac Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index
Starting Grade 1 2 3	access point: Amount of Structure Defects 0 0 12	Easting: Structural Segment Grade	Structural Pipe Rating	AA3A	Structural Pipe Rating Index 3.5	e: Additional SP-901 Amount of O&M Defects 0 0 0	Into: L6 Elevation: O&M Segment Grade 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 0000	/stem: O&M Pipe Rating Index 0	GPS accurac Over Overall Pipe Rating 84	cy: rall Pipe Overall Pipe Rating Index 3.5
Starting Grade	access point: Amount of Structure Defects 0 0 12 12	Easting: Structural Segment Grade	Structural Pipe Rating	AA3A	Structural Pipe Rating Index	e: Additional SP-901 Amount of O&M Defects 0 0 0 0	Into: L6 Elevation: O&M Segment Grade 0 0 0 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 00000	/stem: O&M Pipe Rating Index 0	GPS accurac Over Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index 3.5

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	MH-342	SP-9016	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	15	АМН												MH-342
0.0	27	MWL					15							
2.0	47	D	S01				10					S	4	Oval
2.0	93	SCP	S02						4	8		S	3	
61.9	227	ADP												JO5323 - Outfall to open ditch
62.0	289	D	F01				10					S	4	Oval
62.0	289	SCP	F02						4	8		S	3	

14023 131st St E Orting, Washington 98360 PO Box 428 Sumner, Washington 98390 Phone: (253) 848-5250

	PACP Sewer Report												
Surveyed by: John Bren 253-405-3	Surveyed by: Certificate No: Owner: John Brent 06021414					Survey Customer		Drainage ar	ea:	Sheet number:			
Work order: Pipeline segment ref: Start date/time: SP-14463 2014/07/18 12:27						Street: 19553 25T	H AVE NE		City: SHORELINE				
Location details:							nole No:		Rim to invert: Grade to invert:			Rim to grade:	
Downstream manhole No: Rim to invert: CB-9537						Grade to invert: Rim to grade: S			Sewer use: Direction: Flow control:			ol: Height: 24	
Width: Shape: Material: Ln. method: Pipe joint length: C CMP						Total length: Length surveyed: Ye				Year laid: Year renewed: Media label:			
Purpose: Sewer category: Pre-cleaning Date cleaned: Weather: Location code: Additional info: N 1 SP-14463													
		N		1		SP-144	163						
Starting	access point:	Easting:		Northin	ng:	SP-144	163 Elevation:		Coordinate sy	/stem:	GPS accurat	-y:	
Starting Grade	access point: Amount of Structura Defects	Easting: Structural Structural Segment Grade	Structural Pipe Rating	Structural Quick	Structural Pipe Rating Index	Amount of O&M Defects	Elevation: 0&M Segment Grade	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	vstem: O&M Pipe Rating Index	GPS accurat Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index	
Starting Grade	access point: Amount of Structure Defects	N Easting: Structural Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	Filevation: 0&M Segment Grade 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	/stem: O&M Pipe Rating Index	GPS accurat Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index	
Starting Grade 1 2	Amount of Structure Defects	N Easting: Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of 08M Defects	HIG. Flevation: O&M Segment Grade 0 8	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating	vstem: O&M Pipe Rating Index	GPS accurat Ove Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index	
Starting Grade 1 2 3	Amount of Structure Defects	N Easting: Structural Segment Grade	Structural Pipe Rating	1 Northin Structural Quick Rating 00000	Structural Pipe Rating Index	Amount of O&M Defects	Find. Flevation:	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 2400	vstem: O&M Pipe Rating Index 2	GPS accurate Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index	
Starting Grade 1 2 3 4	access point: Amount of Structure Defects 0 0 0 0 0	N Easting: Easting: Structural Segment Grade 0 0 0 0 0 0 0 0	Structural Pipe Rating	1 Northin Structural Quick Rating 00000	Structural Pipe Rating Index	Amount of O&M Defects	HIND: HG3 Elevation: O&M Segment Grade 0 8 0 0 0	O&M O&M Pipe Ratin	Coordinate sy g O&M Quick Rating 2400	2 vstem: 0&M Pipe Rating Index	GPS accurate Overall Pipe Rating	cy: rall Pipe Overall Pipe Rating Index	

14023 131st St E Orting, Washington 98360 PO Box 428 Sumner, Washington 98390 Phone: (253) 848-5250

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline segment ref:	Sheet number:
John Brent		2014/07/18	91622	SP-14463	
253-405-1592					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint	Circum Loc	ferential ation	Image Ref.	Family	Rating	Remarks
					1st	2nd			At/From	to				
0.0	20	ACB												CB-9537
0.0	33	MWL					10							
22.0	82	DAE					5		3	6		O&M	2	
25.1	126	IW							10			O&M	2	
29.1	153	IW							10			O&M	2	
41.9	191	DAE					5		4	5		O&M	2	
61.0	240	AEP												91622

	PACP Sewer Report												
Surveyed by: Certificate No: Owner: Josh Graves 253 03-2109							Survey Customer		Drainage Ar	ea:	Sheet Number:		
Nork order: Pipeline Segment Ref: Start date/time: SP-14463 2014/05/13 06:26						Street: 19824 25th	n Ave NE						
Location details:						Upstream manh Ditch	nole No:		Rim to invert: Grade to invert: Rim to grade:				
Downstream manhole No: Rim to invert: CB-9537					ert:	Grade to invert	Rim to gr	ade: S	ewer use:	Direction: U	Flow Contr	ol: Height: 24	
Width:	Vidth: Shape: Material: Ln. Method: Pipe Joint Length: C CMP				Length:	Total length:	Length s	surveyed:	Year Laid: Year renewed: Media Label:				
Purpose: S	Sewer Category: P	Pre-Cleaning Dat	e Cleaned:	Weather: 1	Location Code	e: Additiona	l info:						
Starting	access point:	Easting:		Northir	ng:	Elevation:			Coordinate sy	rstem:	GPS accuracy:		
Grade	Amount of Structura Defects	Structural I Structural Segment Grade	Structural Pipe Rating	Structural Quick Rating	Structural Pipe Rating Index	Amount of O&M Defects	O&M Segment Grade	O&M O&M Pipe Ratin	g O&M Quick Rating	O&M Pipe Rating Index	Over Overall Pipe Rating	all Pipe Overall Pipe Rating Index	
1	0	0				0	0						
2	0	0				7	14						
3	0	0	0	0000	0	0	0	14	2700	2	14	2	
4	0	0				0	0						
5	0	0				0	0						

Surveyed by:	Owner:	Start date/time:	Upstream manhole No:	Pipeline Segment Ref:	Sheet Number:
Josh Graves 253		2014/05/13	Ditch	SP-14463	
405-1048					

Distance (Feet) (Meters)	Video Ref.	Group/ Modifier/ Descriptor Severity	Continuous Defect	S/M/L	Va Inches	alue (mm)	%	Joint Circumferential Location		Image Ref.	Family	Rating	Remarks	
					1st	2nd			At/From	to				
0.0	24	ACB												CB-9537
22.5	95	DAE					5		2	6		O&M	2	
22.5	105	IW	S01						12	12		O&M	2	defect wanders
30.7	201	IW	F01						12	12		O&M	2	Defect wanders
42.5	252	IW							3	9		O&M	2	
46.6	270	IW							7	10		O&M	2	
54.8	310	IW							2	10		O&M	2	
58.9	329	IW							7	10		O&M	2	
61.4	354	AEP												Stop at open ditch - inlet 50% blocked with vegetation

Appendix P Aldercrest Annex Memo

July 12, 2017

Mr. John Featherstone, P.E. Project Manager City of Shoreline 17500 Midvale Avenue North Shoreline, WA 98133-4905

Subject: 25th Avenue NE Flood Reduction Project, Phase 1 (Pre-Design) Feasibility Assessment of Daylighting Ballinger Creek at Aldercrest Annex Site

Dear John:

The City requested that Louis Berger conduct a high level assessment of the additional costs and land area that would be required to daylight Ballinger Creek on the east side of 25th Avenue NE within the Shoreline School District's Aldercrest Annex Site, under the assumption that daylighting improvements constructed under the 25th Avenue NE Flood Reduction Project could also provide stormwater mitigation (detention and treatment) for future redevelopment at the Aldercrest Annex property. Inclusion of a stormwater mitigation facility under the City's project could potentially incentivize the District to allow the City to use a small portion of the western periphery of the property to daylight Ballinger Creek.

Executive Summary

A combined wet pond and detention pond facility is the preferred concept due to minimal footprint size of this facility type compared with other options. Daylighting Ballinger Creek and providing stormwater management facilities for potential intensive future redevelopment of the Aldercrest Annex site would require 2.1 acres (or 13% of the total property), allowing the remaining 14.1 acres (87% of the total property) for other uses.

Providing Aldercrest Annex Stormwater Mitigation facilities are expected to cost approximately \$570,000 for design and construction. This amount is in addition to the 25th Avenue NE Flood Reduction Project regular costs, generally for daylighting Ballinger Creek and installing several box culverts.

The additional costs for Aldercrest Annex Stormwater Mitigation facilities may be offset at least partially by cost savings compared to other alternatives. For example, daylighting Ballinger Creek within the City's North Maintenance Facility (NMF) site could encounter contaminated soils and associated cleanup costs. Avoidance of such cleanup costs associated with the NMF site could make the Aldercrest Annex alternative more cost-competitive in spite of the stormwater pond costs.

520 Pike Street | Suite 1005 | Seattle | WA | 98101 | USA | Tel 206.453.1043

louisberger.com

Scope of Assessment

The scope of work for this assessment was approved by the City on May 12, 2017. The scope of work includes the following:

- Perform a high level analysis to estimate the cost and land area that would be required to provide stormwater mitigation for the potential future redevelopment of the Aldercrest Annex Site. The extent of potential redevelopment shall be estimated based on three comparable school district sites; (1) Shoreline Stadium at 18560 1st Ave NE, (2) Einstein Middle School, and (3) Kellogg Middle School. Shoreline Stadium was included because the District may be interested in relocating that facility due to the existing stadium's proximity to the future 185th Street Light Rail station; the two middle schools were included given that the Aldercrest Annex is a former middle school site and in the long-term future the District may presumably wish to reconstruct a similarly-sized school at this site.
- Based upon assumed future redevelopment of the Aldercrest Annex site, stormwater mitigation facilities (detention and stormwater quality treatment) shall be sized using a continuous simulation hydrologic model such as WWHM or MGSFlood per Department of Ecology requirements. Sizing analysis shall assume forested conditions for the predeveloped model (i.e., assuming that the District must comply with the City's Ecology-based site stormwater management requirements for redevelopment). Louis Berger shall consider providing the detention storage as "floodplain storage" associated with potential Ballinger creek daylighting being considered as part of the 25th Avenue Flood Reduction project if possible. Additionally, Louis Berger shall assess options for providing stormwater quality (basic) treatment of stormwater as part of the site mitigation.
- Based on the analysis results, prepare a schematic plan of the daylighted channel and stormwater mitigation facilities and cost estimate. The cost estimate should include the additional costs (calculated separately) to provide stormwater mitigation for the Aldercrest Annex site. The costs for a daylighted stream approach utilizing the Aldercrest Annex property are assumed to be generally analogous to costs developed under the 25th Avenue NE Flood Reduction Project Draft Pre-Design Report Alternative 3-2 for daylighting Ballinger Creek across the street on the west side of 25th Avenue NE within the NMF site.

Analysis and Results

Potential future redevelopment of the Aldercrest Annex site was estimated by considering a similar level of development for the three developed school district properties listed above. Based on a rough analysis of aerial imagery, the three sites were determined to have an average of approximately 60.5% percent impervious surface coverage:

Site	Total Area (ac)	Impervious Area (ac)	% Impervious
Shoreline Stadium	12.66	5.92	46.8%
Einstein MS	12.4	10.37	83.6%
Kellogg MS	20.92	10.69	51.1%
Average	15.33	8.99	60.5%

The Aldercrest Annex site has a total area of about 16.2 acres. Assuming that the Aldercrest Annex property could undergo future redevelopment at a similar density (i.e., 60.5%), the site would include an estimated 9.8 acres of impervious surfaces, with the remainder assumed to be pervious surfaces such as grass and landscaping. This appeared to be a reasonable – if somewhat conservative – estimate of the potential future redevelopment conditions at the Aldercrest Annex site. The Western Washington Hydrology Model (WWHM) was used to model the pre-developed (forested) and developed conditions in order to initially size stormwater detention volumes for the developed site. The model was also used to assess the water quality treatment requirements. Three options were generally considered as described below:

- Option 1 Floodplain Storage Approach: Apply the required detention storage volume for the • Aldercrest Annex to "floodplain storage" area adjacent to the new daylighted channel. Floodplain storage is a concept of creating new channel storage that is integrated into the creek floodplain above its low flow channel that provides attenuating storage and helps reduce downstream peak flows. Based on the WWHM modeling, approximately 5 acre-feet of detention storage would be necessary. To be effective as floodplain storage this volume would need to be integrated into the future daylighted Ballinger Creek floodplain at a relatively shallow depth (about 2.4 feet) in order to match the projected water surface elevations of the creek (i.e., equivalent storage would be provided within the range of stream elevations between the low flow and 100-year water surface elevation (WSE)). Distributing the required storage volume over this depth requires a bottom area (including the daylighted channel) of about 3 acres and a top area 3.3 acres (approximately 20% of the total property area for Aldercrest Annex). Because site runoff would also require treatment prior to entering the floodplain storage area, a separate stormwater treatment system (such as a wetpond or stormwater wetland) would be needed, requiring additional area. Combining this floodplain storage area plus a separate water quality treatment facility would take up a large percentage of the site which would presumably be undesirable to the District. Due to this apparent infeasibility, further analysis was not performed for this option to determine the additional area that would be required for treatment.
- Option 2 Constructed Wetland and Detention Pond: Provide stormwater mitigation using a combined constructed wetland and detention pond separated from the future Ballinger Creek daylighted channel with a berm. The advantage of a separated facility (compared with Option 1 floodplain storage) is that it allows for greater storage depth and accordingly a smaller facility footprint. Per Ecology requirements for a constructed wetland, the facility would be comprised of two cells: a pre-settling cell and a wetland cell. The pre-settling cell could have a depth of 4 to 8 feet and contain 33% of the storage volume. The wetland cell would have an average depth of 1.5 feet and account for the remaining 67% of the storage volume. An initial layout of this option was created and (while having a smaller footprint than the floodplain storage option) at 2.3 acres or 14% of the total property area, it is likely too large to be desirable to the District, assuming more compact options are available.
- <u>Option 3 Combined Wet Pond and Detention Pond</u>: Provide stormwater mitigation using a combined wet pond and detention pond separated from the daylighted channel with a berm. The

combined detention pond and wet pond approach is similar to using a more conventional detention pond while providing additional "dead storage" for treatment. Dead storage is a volume of "standing water" within the facility which does not drain between storm events. The advantage of this option over the combined constructed wetland and detention pond (Option 2) it that it allows for a deeper facility and thus a more efficient use of space. The detention portion was sized assuming a 6 foot effective depth (including 1 foot of freeboard) contained within a berm. This option would have the smallest stormwater management facility footprint of about 1.8 acres (11% of the total property) and thus is the preferred option to maximize usable area of the Aldercrest Annex site.

Based upon the Option 3 combined wet pond and detention pond concept, a preliminary sketch was developed and is attached as Figure 1. Due to the high-level nature of this assessment a number of assumptions were made in the analysis:

- Stormwater pond sizing is based on a maximum 9.8 acres of impervious future redevelopment at the Aldercrest Annex site. For any redevelopment concept with significantly less impervious surface, a significantly smaller stormwater pond could be used.
- It is assumed that the Aldercrest Annex would still need to comply with Ecology's Minimum Requirement #5 (On-site Stormwater Management) and that the District would bear this cost separately. The analysis does not account for some potential minor reductions in stormwater pond size resulting from use dispersed on-site stormwater management facilities such as LID features to satisfy MR #5.
- The analysis assumes rooftop drainage will not be separated from pollution generating impervious surfaces and water quality treatment is required for the combined flows.
- The analysis assumes an available area for daylighting the Ballinger Creek channel approximately 50 feet wide and 300 feet long between the east side of 25th Avenue NE right-of-way and the western toe of stormwater pond berm. This space would allow for some meandering and habitat features for the daylighted Ballinger Creek; however a much smaller floodplain storage area is available compared to the Alternative 3-2 concept for the NMF site.

Overall it is estimated that approximately 2.1 acres (13% of the total property) could provide sufficient space for both daylighting Ballinger Creek and providing stormwater management facilities for intensive redevelopment of the Aldercrest Annex site.

Based on the analysis and schematic of Option 3 – Combined Wet Pond and Detention Pond, a cost estimate (see attached) was developed to determine the additional cost of providing stormwater mitigation for future redevelopment of the Aldercrest Annex site as compared to daylighting and constructing floodplain storage within the NMF site (Alternative 3-2 from the 25th Avenue NE Flood Reduction Project Draft Pre-Design Report). Costs for Alternative 3-2 were updated for daylighting along east side of 25th Avenue NE within District property, and an added cost schedule was developed for the Aldercrest Annex stormwater mitigation facilities.

The costs for the Aldercrest Annex stormwater mitigation facilities include construction of the detention/ wet pond, control structure, some planting, access road, and a trail amenity which would connect the upper portions of school property to 25th Avenue NE (by going around the pond), as well as all associated costs such as design, permitting, and construction management. The cost estimate does not include land cost, assuming that the 50 foot wide daylighting area east of 25th Avenue NE would be made available to the City for creek daylighting usage in exchange for the stormwater mitigation pond.

A comparison of costs between Alternative 3-2 and the alternative of daylighting the creek within the Aldercrest Annex was then performed and is shown below:

Project Element (Schedule)	Alternative 3-2 (adjusted from Draft Pre-Design Report, see discussion below)	Alternative to daylight Ballinger Creek within Aldercrest Annex and provide stormwater mitigation for property redevelopment
Schedule A (NE 195 th Street and Downstream Improvements) – [NO CHANGE]	\$2.24 Million	\$2.24 Million
Schedule B (25 th Avenue NE Improvements)	\$4.04 Million	\$3.79 Million
[NEW] Schedule C (Aldercrest Annex Stormwater Mitigation)	\$0 [Not Applicable]	\$0.57 Million
Total	\$6.3 Million	\$6.6 Million

Thus, a high-level cost estimate for the <u>net</u> increase above Alternative 3-2 for locating the daylighted Ballinger Creek channel on the east side of 25th Avenue NE if costs are added to provide stormwater mitigation for the Aldercrest Annex site would be about \$300,000.

One note about the cost comparison is that the cost estimate for Alternative 3-2 was updated from the draft Predesign Report based upon subsequent geotechnical investigations within the NMF site. The draft Predesign report included a cost contingency for special handling and disposal of contaminated soil because prior investigations had found some areas of contamination. The subsequent geotechnical investigations included a series of shallow borings and testing for contaminated materials. While some contaminated soils were found, it was less extensive than assumed for the cost contingency in the draft Pre-Design report. The cost estimate for Alternative 3-2 was therefore reduced to reflect an assumption that less contaminated materials would be found during excavation. The updated cost for Alternative 3-2 with this assumption is included as an attachment.

Please call if you have any questions at (206) 453-1549.

Sincerely,

l Fedh

Mike Giseburt, P.E. Senior Project Manager

MSG/atoEnclosure

louisberger.com

Table 1.	Planning Level Design, Permitting, and Construction	Cost Estim	ate for Aldero	crest Annex D	Detention Facility	
SCHEDULE	A: NE 195TH STREET	1	18	\$107.000	\$107.000	
- '				\$107,000	\$107,000	
2	PROJECT TEMPORARY TRAFFIC CONTROL (5%)	1	LS	\$40,000	\$40,000	Assume access to residences maintained during construction
4	SPCC PLAN	1	LS	\$20,000	\$20,000	
5	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000	
6	REMOVE ASPHALT CONC. PAVEMENT	164 45	SY LF	\$18 \$12	\$2,952 \$540	
8	REMOVE SIDEWALK	35	SY	\$20	\$700	
9	REMOVAL OF STRUCTURE AND OBSTRUCTION	1	LS	\$20,000	\$20,000	
10	EMBANKMENT COMPACTION	908	CY	\$4 \$30	\$3,631	
12	CHANNEL EXCAVATION	464	CY	\$25	\$11,595	
13	STRUCTURE EXCAVATION CLASS B INCL. HAUL	1221	CY	\$30	\$36,630	
14 15	9' W x 3.6' H x61'L CONCRETE BOX CULVERT STRUCTURE	854	EA	\$10 \$132.000	\$8,540	
16	WING WALLS	1050	SF	\$50	\$52,500	
17	CRUSHED SURFACING TOP COURSE	120	TN	\$35	\$4,199	2" FOR PAVEMENT RESTORATION
10	ASPHALT TREATED BASE	18	TN	\$200	\$3,455	4"
20	PLANING BITUMINOUS PAVEMENT	71	SY	\$15	\$1,067	
21	CEMENT CONC. TRAFFIC CURB AND GUTTER	45	LF	\$25 \$100	\$1,125	
23	CEMENT CONC DRIVEYWAY ENTRANCE TYPE_	0	SY	\$100	\$0	
24	STREAMBED SEDIMENT	458	TN	\$40	\$18,315	
25 26	WATER SERVICE RELOCATION SEWER CASING	100	LEA LE	\$2,000	\$0	PADDEN BID PRICE
20		100		¢ccc	\$00,000	4' spacing on center, includes establishment,17133 SF
27	PSIPE - 1 GAL PLANTS - RIPARIAN PLANTINGS	1,236	EA	\$10.00	\$12,360	TRIANGLE PATTERN
28	SOD INSTALLATION	28	EA SY	\$1,000.00	\$28,000	
30	TOPSOIL	635	CY	\$50.00	\$31,728	
31	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$50,000	\$50,000	
32	LARGE WOODY DEBRIS	13	EA	\$1,200	\$15,655 \$20,873	FOX AND BOLTON 11 KEY PIECES PER 100M
34	HANDRAIL	80	LF	\$180	\$14,400	
35		80	LF	\$60	\$4,800	FACTORED UP FOR WALL INTEGRATION
36	ABANDON/PLUG EXISTING PIPE	25	EA TN	\$2,000	\$0	
38	EROSION/WATER POLLUTION CONTROL	1	LS	\$45,000	\$45,000	
39	SPECIAL HANDLING 66" DIA PIPE	1	LS	\$20,000	\$20,000	
40	ROCK PROTECTION	617	TN	\$10,000	\$10,000	
42	EARTH FILLED GEOCELLS	500	SY	\$50	\$25,000	
43	GABION OUTLET PROTECTION	1 195	LS	\$15,000	\$15,000	
44	DEWATERING	1	LS	\$40,000	\$40,000	
46	RECORD DRAWINGS	1	LS	\$5,000	\$5,000	
SUBTOTAL	SCHEDULE A CONSTRUCTION COST			20.0%	\$929,291	
SUBTOTAL	SCHEDULE A CONSTRUCTION COST WITH CONTINGENCY			30.0 %	\$1,209,000	
SALES TAX				9.5%	\$114,860	
TOTAL SC	HEDULE A CONSTRUCTION COST WITH TAX AND CONTINGEN	СҮ			\$1,323,900	
ADMINISTR	ATIVE COSTS			10%	\$133,000	
DESIGN					\$384,000	
	- CTION MANAGEMENT/CONSTRUCTION ADMINISTRATION	4500	<u>SE</u>	15% \$ 30.00	\$199,000	
SPECIAL T	ESTING AND INSPECTIONS	4300		5%	\$67,000	
TOTAL SC	HEDULE A PROJECT COST				\$2,242,000	
SCHEDULE	B: 25TH AVENUE NE					
1	MOBILIZATION (10%)	1	LS	\$175,000	\$175,000	
2	PROJECT TEMPORARY TRAFFIC CONTROL (8%)	1	LS	\$100,000	\$100,000	Assume access to residences maintained during construction
3	SURVEYING	1	LS	\$20,000	\$20,000	
4	SPCC PLAN CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000	
6	REMOVE ASPHALT CONC. PAVEMENT	392	SY	\$18	\$7,056	
7	REMOVE CURB AND GUTTER		LF	\$12	\$0	
8 9	REMOVE SIDEWALK REMOVAL OF STRUCTURE AND OBSTRUCTION	1	LS	\$20 \$20.000	\$0	
10	EMBANKMENT COMPACTION	2187	CY	\$4	\$8,747	
11	GRAVEL BORROW INCL HAUL	2187	CY	\$30	\$65,605	
12	STRUCTURE EXCAVATION CLASS B INCL. HAUL	2086	CY	\$25	\$62,568	
14	SHORING OR EXTRA EXCAVATION CLASS B	311	SY	\$5	\$1,555	
15	9' W x 4.6' H x75'L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$135,000	\$135,000	
17	9' W x 4.6' H x52'L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$93,600	\$93,600	
18	WALL	2530	SF	\$50	\$126,500	
19 20		5	EA	\$1,500 \$45	\$7,500	
20	CRUSHED SURFACING TOP COURSE	257	TN	\$40 \$35		2" FOR PAVEMENT RESTORATION
22	HMA CL. 1/2 IN. PG	137	TN	\$110	\$15,083	2"
23	ASPHALT TREATED BASE	91	TN	\$100 \$15	\$9,139 \$23,508	4 ⁻
24	CEMENT CONC. TRAFFIC CURB AND GUTTER	471	LF	\$25	\$11,775	
26	CEMENT CONC. SIDEWALK	419	SY	\$100	\$41,867	
27	UEMENT CONC DRIVEYWAY ENTRANCE TYPE	0	SY TN	\$110 \$40	\$0	
29	WATER SERVICE RELOCATION	7	EA	\$2,000	\$14,000	
30	WATER RELOCATION 6" DIA	170	LF	\$120	\$20,400	Assume need to replace adjacent to culverts and wall

						4' specing on conter includes establishment (6294	
31	PSIDE - 1 GAL PLANTS - PIPAPIAN PLANTINGS	1.070	EA	\$10.00	\$10.695	4 Spacing on center, includes establishment,(0304- 0*150)±(530-70-75-30-52)*6 SE TRIANCI E PATTERN	
32	TREE MITIGATION	20	EA	\$1,000.00	\$20,000		
33	SOD INSTALLATION	95	SY	\$30.00	\$2,863		
34	TOPSOIL	250	CY	\$50.00	\$12,500		
35	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$15,000	\$15,000		
36	LARGE WOODY DEBRIS	10	EA	\$1,200	\$12,000	FOX AND BOLTON 11 KEY PIECES PER 100M	
37	EARTH ANCHORS	32	EA	\$800	\$25,600		
38	HANDRAIL	594	LF	\$180	\$106,920		
39	BEAM GUARDRAIL	562	LF	\$60	\$33,720	FACTORED UP FOR WALL INTEGRATION	
40	ABANDON/PLUG EXISTING PIPE	2	EA	\$2,000	\$4,000		
41		20	111	\$00,000	\$2,125		
42		1	1.5	\$20,000	\$20,000		
43	RECORD DRAWINGS	1	15	\$5,000	\$5,000		
			20	40,000	40,000		
SUBTOTAL	SCHEDULE B CONSTRUCTION COST				\$1,515,116		
CONSTRU	CTION CONTINGENCY			30.0%	\$454,535		
TOTAL SC	HEDULE B CONSTRUCTION COST WITH CONTINGENCY				\$1,970,000		
SALES TAX	X			9.5%	\$187,150		
TOTAL SC	HEDULE B CONSTRUCTION COST WITH TAX AND CONTINGEN	CY			\$2,158,000		
OTHER AF	PPROXIMATED PROJECT COSTS						
ADMINIST	RATIVE COSTS			10%	\$216,000		
DESIGN A	ND PERMITTING				\$874,000		
CONSTRU	CTION MANAGEMENT/CONSTRUCTION ADMINISTRATION			15%	\$324,000		
TEMPORA	RY AND PERMANENT EASEMENT NEGOTIATION			5%	\$108,000		
SPECIAL T	ESTING AND INSPECTIONS			5%	\$108,000		
TOTAL 00					¢0 700 000		
TOTAL SC	HEDOLE B PROJECT COST				\$3,788,000		
SCHEDULE	C: ALDERCREST ANNEX DETENTION POND		I				
1	MOBILIZATION (10%)	1	LS	\$30.000	\$30.000		
2	SURVEYING	1	LS	\$2,000	\$2,000		
3	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000		
4	EMBANKMENT COMPACTION	2260	CY	\$4	\$9,040		
5	COMMON BORROW INCL HAUL	6780	CY	\$8	\$54,240		
6	EXCAVATION	2260	CY	\$25	\$56,500		
7	OUTLET CONTROL STRUCTURE	1	EA	\$4,000	\$4,000		
8	CORRUGATED POLYETHYLENE STORM SEWER PIPE 12 IN. DI	110	LF	\$45	\$4,950		
9	HMA CL. 1/2 IN. PG	55	TN	\$110	\$6,050		
10	SEEDING, FERTILIZING, AND MULCHING	2	AC	\$5,500.00	\$9,185		
11	EROSION/WATER POLLUTION CONTROL	1	LS	\$20,000	\$20,000		
12		185		\$35 \$27	\$0,475		
14		250	TON	\$27 \$35	\$8 753		
15	DEWATERING	1	15	\$20,000	\$20,000		
16	RECORD DRAWINGS	1	LS	\$1,000	\$1,000		
SUBTOTAL	SCHEDULE A CONSTRUCTION COST				\$255,175		
CONSTRU	CTION CONTINGENCY			30%	\$76,553		
TOTAL SC	HEDULE A CONSTRUCTION COST WITH CONTINGENCY				\$332,000		
SALES TAX	X			9.5%	\$31,540		
TOTAL SC	HEDULE A CONSTRUCTION COST WITH TAX				\$363,500		
OTHER AF	PROXIMATED PROJECT COSTS						
ADMINIST	RATIVE COSTS			10%	\$37,000	l	
DESIGN A				20%	\$73,000		
TEMPORA	CHUN MANAGEMENT/CONSTRUCTION ADMINISTRATION			15%	\$55,000		
				5%	\$19,000		
JFEGIAL I				5%	φ19,000		
TOTAL SC	HEDULE C PROJECT COST				\$567 000		
			1		<i>4001,000</i>	Estimate based on 2017 dollars, rounded to nearest \$1000:	
	TOTAL ESTIMATED PROJECT COST SCHEDULES A, B, AND C: \$6,597,000 costs will need to be adjusted for Time Value of Money (TMV) when programming funds.						

Table 1.	Table 1. Planning Level Design, Permitting, and Construction Cost Estimate for Alternative 3 - Alternative 2 Alignment (UPDATED 7/10/17)					
Spec Section	Bid Item Description	Quantity	Unit	Unit Cost	Amount	Assumptions/Notes
		1	15	\$107.000	\$107.000	
<u> </u>		<u> </u>		\$107,000	\$107,000	
2	PROJECT TEMPORARY TRAFFIC CONTROL (5%)	1	LS	\$40,000 \$20,000	\$40,000 \$20,000	Assume access to residences maintained during construction
4	SPCC PLAN	1	LS	\$5,000	\$5,000	
5	CLEARING AND GRUBBING REMOVE ASPHALT CONC. PAVEMENT	1	LS	\$5,000 \$18	\$5,000 \$2,952	
7	REMOVE CURB AND GUTTER	45	LF	\$12	\$540	
8	REMOVE SIDEWALK	35	SY	\$20 \$20,000	\$700	
10	EMBANKMENT COMPACTION	908	CY	\$4	\$3,631	
11		908 464	CY	\$30 \$25	\$27,233 \$11,505	
12	STRUCTURE EXCAVATION CLASS B INCL. HAUL	1221	CY	\$30	\$36,630	
14	SHORING OR EXTRA EXCAVATION CLASS B	854	SY	\$10	\$8,540	
15 16	WING WALLS	1 1050	EA SF	\$132,000 \$50	\$132,000	
17	CRUSHED SURFACING TOP COURSE	120	TN	\$35	\$4,199	2" FOR PAVEMENT RESTORATION
<u>18</u> 19	HMA CL. 1/2 IN. PG ASPHALT TREATED BASE	24 18	TN TN	\$200 \$190	\$4,726 \$3,455	2" 4"
20	PLANING BITUMINOUS PAVEMENT	71	SY	\$15	\$1,067	
21	CEMENT CONC. TRAFFIC CURB AND GUTTER	45	LF	\$25 \$100	\$1,125	
22	CEMENT CONC. SIDEWALK CEMENT CONC DRIVEYWAY ENTRANCE TYPE_	0	SY	\$100	<u>\$3,500</u> \$0	
24		458	TN	\$40	\$18,315	
25 26	SEWER CASING	100	LF	\$2,000	\$0	PADDEN BID PRICE
					+	4' spacing on center, includes establishment,17133 SF
27 28	PSIPE - 1 GAL PLANTS - RIPARIAN PLANTINGS	1,236 28	EA FA	\$10.00	\$12,360 \$28,000	TRIANGLE PATTERN
29	SOD INSTALLATION	0	SY	φ1,000.00	ψ20,000	
30		635	CY	\$50.00	\$31,728	
31 32	LARGE WOODY DEBRIS	1	EA	\$50,000 \$1,200	\$50,000 \$15,655	FOX AND BOLTON 11 KEY PIECES PER 100M
33	EARTH ANCHORS	26	EA	\$800	\$20,873	
34 35		80 80	LF	\$180 \$60	\$14,400 \$4,800	
36	ABANDON/PLUG EXISTING PIPE	0	EA	\$2,000	\$0	
37		25	TN	\$85	\$2,125	
38	SPECIAL HANDLING 66" DIA PIP	1	LS	\$45,000	\$45,000	
40	PROTECT EXISTING UTILITIES	1	LS	\$10,000	\$10,000	
41	ROCK PROTECTION FARTH FILLED GEOCELLS	617 500	IN SY	\$70 \$50	\$43,167 \$25,000	
43	GABION PROTECTION	1	LS	\$15,000	\$15,000	
44	STREAM ACCESS ROAD	185	TN	\$35	\$6,475	
45	RECORD DRAWINGS	1	LS	\$5,000	\$5,000	
SUBTOTAL	SCHEDULE A CONSTRUCTION COST				\$929,291	
CONSTRU	CTION CONTINGENCY HEDULE A CONSTRUCTION COST WITH CONTINGENCY			30%	\$278,787 \$1,209,000	
SALES TAX	(9.5%	\$114,860	
TOTAL SC	HEDULE A CONSTRUCTION COST WITH TAX				\$1,323,900	
ADMINISTI	RATIVE COSTS			10%	\$133,000	
DESIGN A					\$384,000	
EASEMEN	T	4500	SF	15% \$30	<u>\$199,000</u> \$135.000	
SPECIAL T	ESTING AND INSPECTIONS			5%	\$67,000	
TOTAL SC	HEDULE & CONSTRUCTION COST				\$2 242 000	
TOTAL SC					φ2,242,000	1
CUEDIN -						
1	MOBILIZATION (10%)	1	LS	\$190,000	\$190,000	
2		4	10	\$70,000	\$70,000	Assume access to residences maintained during construction
3	SURVEYING	1	LS	\$20,000	\$20,000	
4	SPCC PLAN	1	LS	\$5,000	\$5,000	
5	CLEARING AND GRUBBING REMOVE ASPHALT CONC. PAVEMENT	1 309	LS SY	\$5,000 \$18	\$5,000 \$5,562	
7	REMOVE CURB AND GUTTER		LF	\$12	\$0	
8	REMOVE SIDEWALK	1	SY	\$20 \$20,000	\$0	
10	EMBANKMENT COMPACTION	2056	CY	\$4	\$8,225	
11		2056	CY	\$30	\$61,686	
12	CHANNEL EXCAVATION CHANNEL EXCAVATION WITH SPECIAL DISPOSAL ¹	388	CY	ຈ∠ວ \$100	φ147,173 \$68,849,68	See Note ¹
14	STRUCTURE EXCAVATION CLASS B INCL. HAUL	2820	CY	\$30	\$84,600	
15		350	SY EA	\$5 \$126.000	\$1,750	
17	9' W x 4.6' H x75'L CONCRETE BOX CULVERT STRUCTURE	<u> </u>	EA	\$135,000	<u>\$1</u> 35,000	
18	9' W x 4.6' H x30'L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$54,000	\$54,000	
20	9 VV X 4.0 TT XOZI CONCRETE BOX CULVERT STRUCTURE	2,530	SF	৯৬ <i>3</i> ,600 \$50	ຈອ3,600 \$126,500	
21		3	EA	\$1,500	\$4,500	
22 23	CORRUGATED POLYETHYLENE STORM SEWER PIPE 12 IN. DI	60 419	LF TN	\$45 \$35	\$2,700 \$14 678	2" FOR PAVEMENT RESTORATION
23	HMA CL. 1/2 IN. PG	84	TN	\$110	\$9,197	2"
25		72	TN	\$100	\$7,202	4"
20 27	CEMENT CONC. TRAFFIC CURB AND GUTTER	471	LF	\$15 \$25	<u></u>	
28		419	SY	\$100	\$41,867	
29		U	SY	ի ֆ110	\$ 0	

30	STREAMBED SEDIMENT	712	TN	\$40	\$28,490	
31	WATER SERVICE RELOCATION	6	EA	\$2,000	\$12,000	
32	WATER RELOCATION 6" DIA	170	LF	\$120	\$20,400	Assume need to replace adjacent to culverts and wall
						4' spacing on center, includes establishment,17133 SF
33	PSIPE - 1 GAL PLANTS - RIPARIAN PLANTINGS	1,236	EA	\$10.00	\$12,360	TRIANGLE PATTERN
34	TREES	20	EA	\$1,000.00	\$20,000	
35	SOD INSTALLATION	0	SY	\$30.00	\$0	
36	TOPSOIL	250	CY	\$50.00	\$12,500	
37	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$15,000	\$15,000	
38	LARGE WOODY DEBRIS	16	EA	\$1,200	\$19,035	FOX AND BOLTON 11 KEY PIECES PER 100M
39	EARTH ANCHORS	32	EA	\$800	\$25,380	
40	HANDRAIL	594	LF	\$180	\$106,920	
41	BEAM GUARDRAIL	562	LF	\$60	\$33,720	FACTORED FOR WALL INTEGRATION
42	ABANDON/PLUG EXISTING PIPE	2	EA	\$2,000	\$4,000	
43	HABITAT BOULDERS	25	TN	\$85	\$2,125	
44	EROSION/WATER POLLUTION CONTROL	1	LS	\$20,000	\$20,000	
45	STREAM ACCESS ROAD	185	TN	\$35	\$6,475	
46	DEWATERING	1	LS	\$100,000	\$100,000	
47	RECORD DRAWINGS	1	LS	\$5,000	\$5,000	
SUBTOTAL	SCHEDULE B CONSTRUCTION COST				\$1,644,511	
CONSTRU	CTION CONTINGENCY			30%	\$493,353	
TOTAL SCI	HEDULE A CONSTRUCTION COST WITH CONTINGENCY				\$2,138,000	
SALES TAX	(9.5%	\$203,110	
TOTAL SC	HEDULE A CONSTRUCTION COST WITH TAX				\$2,341,100	
OTHER AF	PROXIMATED PROJECT COSTS					
ADMINIST	RATIVE COSTS			10%	\$235,000	
DESIGN AND PERMITTING					\$874,000	
CONSTRUCTION MANAGEMENT/CONSTRUCTION ADMINISTRATION				15%	\$352,000	
TEMPORARY AND PERMANENT EASEMENT NEGOTIATION				5%	\$118,000	
SPECIAL T	ESTING AND INSPECTIONS			5%	\$118,000	
TOTAL SC	HEDULE B CONSTRUCTION COST				\$4,039,000	
TOTAL ESTIMATED PROJECT COST SCHEDULES A AND B: \$6,281,000 Estimate based on 2016 dollars, rounded to nearest \$1000; CONTRACT COST SCHEDULES A AND B: \$6,281,000 costs will need to be adjusted for Time Value of Money (TM) When programming funds. when programming funds. Costs will need to be adjusted for Time Value of Money (TM)						

¹Assumes approximately 7% material exceeds MOTCA standards and requires special disposal, plus additional \$30k for sediment sampling and monitoring. This allowance does not cover full site clean up if required.

Table 1.	Planning Level Design, Permitting, and Construction	Cost Estim	ate for Aldero	crest Annex D	Detention Facility	
SCHEDULE	A: NE 195TH STREET			.	A107.000	
1	MOBILIZATION (10%)	1	LS	\$107,000	\$107,000	
2	PROJECT TEMPORARY TRAFFIC CONTROL (5%)	1	LS	\$40.000	\$40.000	Assume access to residences maintained during construction
3	SURVEYING	1	LS	\$20,000	\$20,000	
4	SPCC PLAN	1	LS	\$5,000	\$5,000	
5	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000	
6	REMOVE ASPHALT CONC. PAVEMENT	164	SY	\$18	\$2,952	
/	REMOVE CURB AND GUITER	45	LF	\$12	\$540	
9	REMOVE SIDEWALK	1	LS	\$20,000	\$20.000	
10	EMBANKMENT COMPACTION	908	CY	\$4	\$3,631	
11	GRAVEL BORROW INCL HAUL	908	CY	\$30	\$27,233	
12	CHANNEL EXCAVATION	464	CY	\$25	\$11,595	
13	STRUCTURE EXCAVATION CLASS B INCL. HAUL	1221	CY	\$30	\$36,630	
14	9' W x 3.6' H y61'L CONCRETE BOX CUI VERT STRUCTURE	004	5F FA	\$132,000	\$6,540	
16	WING WALLS	1050	SF	\$50	\$52,500	
17	CRUSHED SURFACING TOP COURSE	120	TN	\$35	\$4,199	2" FOR PAVEMENT RESTORATION
18	HMA CL. 1/2 IN. PG	24	TN	\$200	\$4,726	2"
19	ASPHALT TREATED BASE	18	TN	\$190	\$3,455	4"
20	PLANING BITUMINOUS PAVEMENT	71	SY	\$15	\$1,067	
21	CEMENT CONC. TRAFFIC CORB AND GUTTER	45	SY	\$25 \$100	\$1,125	
23	CEMENT CONC DRIVEYWAY ENTRANCE TYPE	0	SY	\$110	\$0	
24	STREAMBED SEDIMENT	458	TN	\$40	\$18,315	
25	WATER SERVICE RELOCATION	0	EA	\$2,000	\$0	
26	SEWER CASING	100	LF	\$300	\$30,000	PADDEN BID PRICE
07		1 000	F A	\$10.00	640.000	A spacing on center, includes establishment,1/133 SF
27	PSIPE - 1 GAL PLANTS - RIPARIAN PLANTINGS	1,230	EA	\$10.00	\$12,360	
29	SOD INSTALLATION	0	SY	φ1,000.00	ψ20,000	
30	TOPSOIL	635	CY	\$50.00	\$31,728	
31	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$50,000	\$50,000	
32	LARGE WOODY DEBRIS	13	EA	\$1,200	\$15,655	FOX AND BOLTON 11 KEY PIECES PER 100M
33	EARTH ANCHORS	26	EA	\$800	\$20,873	
34		80		\$180	\$14,400	
35	ABANDON/PLUG EXISTING PIPE	80	EA EA	\$2,000	\$4,800	
37	HABITAT BOULDERS	25	TN	\$85	\$2,125	
38	EROSION/WATER POLLUTION CONTROL	1	LS	\$45,000	\$45,000	
39	SPECIAL HANDLING 66" DIA PIPE	1	LS	\$20,000	\$20,000	
40	PROTECT EXISTING UTILITIES	1	LS	\$10,000	\$10,000	
41	ROCK PROTECTION	617	TN	\$70	\$43,167	
42	EARTH FILLED GEOCELLS	500	SY	\$50	\$25,000	
43	STREAM ACCESS ROAD	1	TN	\$15,000	\$15,000	
44	DEWATERING	105	LS	\$40.000	\$40,000	
46	RECORD DRAWINGS	1	LS	\$5,000	\$5,000	
SUBTOTAL	SCHEDULE A CONSTRUCTION COST				\$929,291	
CONSTUC	FION CONTINGENCY			30.0%	\$278,787	
SUBTOTAL	SCHEDULE A CONSTRUCTION COST WITH CONTINGENCY				\$1,209,000	
SALES TAX				9.5%	\$114,860	
OTHER AR	PROVINATED PROJECT COSTS	67			\$1,323,900	
ADMINIST	RATIVE COSTS			10%	\$133.000	
DESIGN					\$384,000	
CONSTRU	CTION MANAGEMENT/CONSTRUCTION ADMINISTRATION			15%	\$199,000	
EASEMEN	Г.	4500	SF	\$ 30.00	\$135,000	
SPECIAL T	ESTING AND INSPECTIONS			5%	\$67,000	
TOTAL SC					\$2,242,000	
TOTAL SU	HEDOLE A PROJECT COST				\$2,242,000	
SCHEDULE	B: 25TH AVENUE NE					
1	MOBILIZATION (10%)	1	LS	\$175,000	\$175,000	
<u> </u>			1.2	6400 000	6 400 000	
2	PROJECT TEMPORARY TRAFFIC CONTROL (8%)	1	LS	\$100,000	\$100,000	Assume access to residences maintained during construction
3		1	15	\$20,000	\$20,000	
5	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000	
6	REMOVE ASPHALT CONC. PAVEMENT	392	SY	\$18	\$7,056	
7	REMOVE CURB AND GUTTER		LF	\$12	\$0	
8	REMOVE SIDEWALK		SY	\$20	\$0	
9	REMOVAL OF STRUCTURE AND OBSTRUCTION	1	LS	\$20,000	\$20,000	
10		2187	CY	\$4	\$8,747	
11		2187	CY	\$30	\$65,605	
13	STRUCTURE EXCAVATION CLASS B INCL. HAUL	2086	CY	\$30	\$62,568	
14	SHORING OR EXTRA EXCAVATION CLASS B	311	SY	\$5	\$1,555	
15	9' W x 4.6' H x75'L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$135,000	\$135,000	
16	9' W x 4.6' H x30'L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$54,000	\$54,000	
17	9 W X 4.6" H X52"L CONCRETE BOX CULVERT STRUCTURE	1	EA	\$93,600	\$93,600	
10	CATCHBASIN TYPE 1	2000	5F FA	ຈວປ \$1.500		
20	CORRUGATED POLYETHYLENE STORM SEWER PIPE 12 IN DI	100	LF	\$45	\$4.500	
21	CRUSHED SURFACING TOP COURSE	257	TN	\$35	\$8,985	2" FOR PAVEMENT RESTORATION
22	HMA CL. 1/2 IN. PG	137	TN	\$110	\$15,083	2"
23	ASPHALT TREATED BASE	91	TN	\$100	\$9,139	4"
24	PLANING BITUMINOUS PAVEMENT	1567	SY	\$15	\$23,508	
25	CEMENT CONC. TRAFFIC CURB AND GUTTER	471	LF	\$25	\$11,775	
20 27	CEMENT CONC. SIDE WALK	419	SY	\$100	941,007 \$0	
28	STREAMBED SEDIMENT	712	TN	\$40	\$28.490	
29	WATER SERVICE RELOCATION	7	EA	\$2,000	\$14,000	
30	WATER RELOCATION 6" DIA	170	LF	\$120	\$20,400	Assume need to replace adjacent to culverts and wall

						4' specing on conter includes establishment (6294	
31	PSIDE - 1 GAL PLANTS - PIPAPIAN PLANTINGS	1.070	EA	\$10.00	\$10.695	4 Spacing on center, includes establishment, (0304- 0*150)+(530-70-75-30-52)*6 SE TRIANCI E PATTERN	
32	TREE MITIGATION	20	EA	\$1.000.00	\$20,000		
33	SOD INSTALLATION	95	SY	\$30.00	\$2,863		
34	TOPSOIL	250	CY	\$50.00	\$12,500		
35	STREAMFLOW DIVERSION / FLOW BYPASS	1	LS	\$15,000	\$15,000		
36	LARGE WOODY DEBRIS	10	EA	\$1,200	\$12,000	FOX AND BOLTON 11 KEY PIECES PER 100M	
37	EARTH ANCHORS	32	EA	\$800	\$25,600		
38	HANDRAIL	594	LF	\$180	\$106,920		
39	BEAM GUARDRAIL	562	LF	\$60	\$33,720	FACTORED UP FOR WALL INTEGRATION	
40	ABANDON/PLUG EXISTING PIPE	2	EA	\$2,000	\$4,000		
41		20	111	\$00,000	\$2,125		
42		1	1.5	\$20,000	\$20,000		
43	RECORD DRAWINGS	1	15	\$5,000	\$5,000		
			20	40,000	40,000		
SUBTOTAL	SCHEDULE B CONSTRUCTION COST				\$1,515,116		
CONSTRU	CTION CONTINGENCY			30.0%	\$454,535		
TOTAL SC	HEDULE B CONSTRUCTION COST WITH CONTINGENCY				\$1,970,000		
SALES TAX	X			9.5%	\$187,150		
TOTAL SC	HEDULE B CONSTRUCTION COST WITH TAX AND CONTINGEN	CY			\$2,158,000		
OTHER AF	PPROXIMATED PROJECT COSTS						
ADMINIST	RATIVE COSTS			10%	\$216,000		
DESIGN A	ND PERMITTING				\$874,000		
CONSTRU	CTION MANAGEMENT/CONSTRUCTION ADMINISTRATION			15%	\$324,000		
TEMPORA	RY AND PERMANENT EASEMENT NEGOTIATION			5%	\$108,000		
SPECIAL T	ESTING AND INSPECTIONS			5%	\$108,000		
TOTAL 00					¢0.700.000		
TOTAL SC	HEDOLE B PROJECT COST				\$3,788,000		
SCHEDULE	C: ALDERCREST ANNEX DETENTION POND		I				
1	MOBILIZATION (10%)	1	LS	\$30.000	\$30.000		
2	SURVEYING	1	LS	\$2,000	\$2,000		
3	CLEARING AND GRUBBING	1	LS	\$5,000	\$5,000		
4	EMBANKMENT COMPACTION	2260	CY	\$4	\$9,040		
5	COMMON BORROW INCL HAUL	6780	CY	\$8	\$54,240		
6	EXCAVATION	2260	CY	\$25	\$56,500		
7	OUTLET CONTROL STRUCTURE	1	EA	\$4,000	\$4,000		
8	CORRUGATED POLYETHYLENE STORM SEWER PIPE 12 IN. DI	110	LF	\$45	\$4,950		
9	HMA CL. 1/2 IN. PG	55	TN	\$110	\$6,050		
10	SEEDING, FERTILIZING, AND MULCHING	2	AC	\$5,500.00	\$9,185		
11	EROSION/WATER POLLUTION CONTROL	1	LS	\$20,000	\$20,000		
12		185		\$35 \$27	\$0,475		
14		250	TON	\$27 \$35	\$8 753		
15	DEWATERING	1	15	\$20,000	\$20,000		
16	RECORD DRAWINGS	1	LS	\$1,000	\$1,000		
SUBTOTAL	SCHEDULE A CONSTRUCTION COST				\$255,175		
CONSTRU	CTION CONTINGENCY			30%	\$76,553		
TOTAL SC	HEDULE A CONSTRUCTION COST WITH CONTINGENCY				\$332,000		
SALES TAX	X			9.5%	\$31,540		
TOTAL SC	HEDULE A CONSTRUCTION COST WITH TAX				\$363,500		
OTHER AF	PROXIMATED PROJECT COSTS						
ADMINIST	RATIVE COSTS			10%	\$37,000	l	
DESIGN A				20%	\$73,000		
TEMPORA	CHUN MANAGEMENT/CONSTRUCTION ADMINISTRATION			15%	\$55,000		
				5%	\$19,000		
JFEGIAL I				5%	φ19,000		
TOTAL SC	HEDULE C PROJECT COST				\$567 000		
			1		<i>4001,000</i>	Estimate based on 2017 dollars, rounded to nearest \$1000:	
	TOTAL ESTIMATED PROJECT COST SCHEDULES A, B, AND C: \$6,597,000 costs will need to be adjusted for Time Value of Money (TMV) when programming funds.						

Appendix Q Ballinger Creek Flow Monitoring Data

TECHNICAL MEMORANDUM

Date:	February 23, 2018
To:	Mike Giseburt, Louis Berger
Copy to:	John Featherstone, City of Shoreline and Shelby Petro, Herrera
From:	Alex Svendsen and Dylan Ahearn
Subject:	25th Avenue NE Flood Reduction Project: Ballinger Creek Hydrologic Monitoring

CONTENTS

Introduction	2
Methods	2
Field Measurement Procedures	
Data Management	
Precipitation Data Referencing	
Results and Discussion	11

APPENDICES

Appendix A	Equipment Specifications
Appendix B	Ballinger Creek Manual Discharge Field Sheets
Appendix C	Rating Curve Results and Individual Storm Event Analysis

TABLES

Table 1. E	Ballinger Creek Manual	Discharge and Offset	Values13
------------	------------------------	----------------------	----------

FIGURES

Ballinger Creek Gage Locations for the 25th Avenue NE Flood Reduction Project	3
	_
Ballinger Creek Gage Station BC-1	5
Ballinger Creek Gage Station BC-2	6
Ballinger Creek Gage Station BC-3	7
Ballinger Creek Gage Station BC-4	8
Ballinger Creek Gage Station BC-Baro	9
	 Ballinger Creek Gage Locations for the 25th Avenue NE Flood Reduction Project Ballinger Creek Gage Station BC-1 Ballinger Creek Gage Station BC-2 Ballinger Creek Gage Station BC-3 Ballinger Creek Gage Station BC-4 Ballinger Creek Gage Station BC-4 Ballinger Creek Gage Station BC-8

2200 Sixth Avenue | Suite 1100 | Seattle, Washington | 98121 | p 206 441 9080 | f 206 441 9108 PORTLAND, OR | MISSOULA, MT | OLYMPIA, WA | BELLINGHAM, WA

INTRODUCTION

In October 2016, Louis Berger authorized Herrera Environmental Consultants (Herrera) to gage flow rates at four locations in Ballinger Creek to support design information (i.e., to calibrate stormwater runoff models) and alternative selection for Ballinger Creek fish passage and stream restoration for the City of Shoreline (City). In coordination with the City and Louis Berger, the use of four gages was deemed necessary to provide sufficient information for this project. A technical memorandum summarizing data collected from December 2016 through August 2017 was prepared by Herrera in September 2017; this technical memorandum includes additional data collected from September 2017 through January 2018.

METHODS

Herrera installed four stream gages in Ballinger Creek in December 2016. The gages were installed in the following locations (see Figure 1):

- 1. Gage BC-1 was installed in a "bird cage" along the north side of NE 200th Street (Figure 2).
- 2. Gage BC-2 was installed in the northeast corner of Brugger's Bog Park downstream of an unnamed tributary that enters Ballinger Creek from the northeast (Figure 3).
- 3. Gage BC-3 was installed in the southeast corner of Brugger's Bog Park immediately upstream of the culverts that convey Ballinger Creek beneath 25th Avenue NE (Figure 4).
- 4. Gage BC-4 was installed approximately 100 feet downstream of the Ballinger Creek culvert outlet under NE 195th Street (Figure 5).

Each gage was installed using 2-inch-diameter PVC pipes with a perforated stilling well tee to maintain a hydraulic connection to Ballinger Creek. In-Situ Rugged TROLL[®] 100 non-vented pressure transducers were housed inside the PVC piping to record water depths (see Appendix A). Each gage was anchored to the stream using an angle iron and hose clamps. Staff gages were also attached to the gages to enable manual water level measurements to ensure the automated logging equipment is functioning correctly and to develop a rating curve for each gaged location to convert water depth to discharge. Finally, an In-Situ Rugged BaroTROLL[®] Data Logger (BC-Baro) was installed amid a rhododendron for visual obscurity to the public along the east side of the City's maintenance facility next to Brugger's Bog Park (Figure 6 and Appendix A). The barometric pressure recorded by this data logger is used to compensate for atmospheric pressure in the non-vented water level measurements.

Figure 2. Ballinger Creek Gage Station BC-1.

Figure 3. Ballinger Creek Gage Station BC-2.

Figure 4. Ballinger Creek Gage Station BC-3.

Figure 5. Ballinger Creek Gage Station BC-4.

Figure 6. Ballinger Creek Gage Station BC-Baro.

Field Measurement Procedures

A rating curve was developed at each gaged location to convert the automated water level measurements (i.e., stage) in Ballinger Creek to a corresponding volumetric rate of flow. Discharge measurements were collected over a range of creek stages to sufficiently develop the rating curve. The stage at each gage location was measured using the staff gage attached to the gage piping, and was manually recorded when the discharge in the creek was manually measured. In the case of gages BC-1 and BC-3, discharge measurements were collected in pipes using a HACH FH950 Portable Velocity Meter and wading rod; Manning's roughness ("n") values for pipes were used to convert water depth and velocity measurements in each pipe to discharge. At gages BC-2 and BC-4, the discharge was recorded using the USGS midpoint velocity were measured using a HACH FH950 Portable Velocity for portable Velocity Meter and wading rod; All data were recorded using standardized field forms (Appendix B).

DATA MANAGEMENT

Stage data collected using the pressure transducers and barometric pressure data logger were uploaded approximately every 2 months using a laptop computer in the field. Uploaded data were transferred to a spreadsheet and reviewed for quality assurance purposes. The manual discharge measurements were also calculated in the office and transferred to a spreadsheet.

The difference between the staff gage reading and automatically logged water level data (at coincident points in time) was calculated after every data download field visit. These offset values were then used to correct raw water level data obtained from the data logger to ensure that they conformed to the measured staff gage readings. These offset values were also used for quality control purposes.

All water level data were compiled and imported into the Aquarius Time-Series data management system software (produced by Aquatic Informatics, Inc.) to develop the rating curves at each of the four gaging stations.

The data were screened for gaps and anomalies prior to converting the stage values to flows. Subsequently, the flow data were imported in a proprietary storm delineation tool (Storm 3.0) to segregate the data into individual storm events. The flow characteristics of each of these storm events were then automatically summarized.

Precipitation Data Referencing

Raw precipitation data (15-minute intervals) were compiled from the King County Hydrologic Information Center using data collected at the Boeing Creek Rain Gauge 04u near Shoreline

Community College. Continuous precipitation data from the rain gage were compiled for the period of December 2016 through January 2018.

RESULTS AND DISCUSSION

The quality assessment of the water level data in Aquarius indicated that there were no gaps or spikes in the data (the exceptions were 10-minute gaps when the data were being downloaded in the field). Consequently, the water level signal did not require correction prior to being converted to flow.

Developing rating curves in small streams is a difficult task. Due to the shifting nature of the stream bed, the rating is frequently associated with errors of between 10 and 25 percent. In addition, since it is exceedingly difficult to be present during the few minutes when each gage experiences its highest flow during the measurement period of record, there is inevitably error associated with extrapolating the rating curve to that highest stage reading. The general rule is that a rating curve should not be extended more than 20 percent beyond the recorded data; however, conditions frequently necessitate extrapolation well beyond that.

Table 1 presents the stage-discharge rating measurements collected at each of the gage locations. As with all rating curves, the best-fit curve was not a perfect fit to the measured points presented in the table. The root mean square error of each curve, as calculated by Aquarius, was 12.7, 10.1, 28.1, and 29.3 percent for gages BC-1, BC-2, BC-3, and BC-4, respectively. This degree of error is typical for rating curves developed in small streams.

Extrapolation error must also be considered when interpreting stage-discharge relationships. At gage BC-1 the highest measured flow was 9.3 cubic feet per second (cfs), but the highest calculated flow was 31.9 cfs, more than a three-fold difference. Similar extrapolations were necessary at the other gage locations. At gage BC-2 the maximum measured flow was 13.3 cfs and the maximum calculated flow was 54.4 cfs; at gage BC-3 the maximum measured flow was 14.6 cfs while the maximum calculated flow was 58.4 cfs; finally, at gage BC-4 the maximum measured flow was 11.4 cfs and the maximum calculated flow was 20.0 cfs. These extrapolations represent the largest uncertainty in the datasets. If more accuracy is desired above the 15 cfs threshold, then additional rating measurements would need to be collected during high flow events. If the data are to be used for model calibration, then Herrera suggests only calibrating for events below the 15 cfs threshold until additional high flow data can be collected.

During the monitoring period of December 2016 through January 2018, a total of 78 individual storm events were identified from the nearby precipitation gage record. The storm event delineation criteria were at least 0.2 inches of rain and an inter-event dry period of 6 hours or more with no rain; 93 storm events did not meet the aforementioned criteria. The general pattern observed in the gage data was an increase in flow in the downstream direction with the exception that the reach between gages BC-3 and BC-4 seems to be a "losing reach" (i.e., flow infiltrating into the stream bed and/or banks). The riparian area along this reach may be

attenuating flows and promoting infiltration. For the 78 delineated storm events, the average storm flow was 0.8, 1.6, 1.8, and 1.6 cfs at gages BC-1, BC-2, BC-3, and BC-4, respectively. The average peak storm discharge was 8.2, 12.7, 14.9, and 8.3 cfs at gages BC-1, BC-2, BC-3, and BC-4, respectively. Finally, the average storm volume was 104,000; 200,000; 228,000; and 192,000 cubic feet (cf) at gages BC-1, BC-2, BC-3, and BC-4, respectively.

Appendix C (an electronic appendix) provides the 5-minute real-time flow data and the summary results for the 78 delineated storm events including event hydrographs. These results can be used to compare with modeled results and to help with alternatives analysis for the proposed project.

						Tab	le 1. Ball	inger Cree	ek Manua	l Discharge a	and Offset	Values.							
BC-1 Date/Time	BC-1 Manual Discharge (cfs)	BC-1 Gage Height (feet)	BC-1 Data Logger Stage (feet)	BC-1 Gage – Logger Stage (feet)	BC-2 Date/Time	BC-2 Manual Discharge (cfs)	BC-2 Gage Height (feet)	BC-2 Data Logger Stage (feet)	BC-2 Gage – Logger Stage (feet)	BC-3 Date/Time	BC-3 Manual Discharge (cfs)	BC-3 Gage Height (feet)	BC-3 Data Logger Stage (feet)	BC-3 Gage – Logger Stage (feet)	BC-4 Date/Time	BC-4 Manual Discharge (cfs)	BC-4 Gage Height (feet)	BC-4 Data Logger Stage (feet)	BC-4 Gage – Logger Stage (feet)
12/16/2016 10:00	0.11	1.93	0.468	1.46	12/16/2016 10:40	0.32	4.92	1.231	3.69	12/16/2016 11:10	0.45	4.55	1.006	3.54	12/16/2016 13:05	0.68	0.80	0.418	0.38
12/19/2016 21:40	4.16	2.40	0.941	1.46	12/19/2016 22:10	4.97	5.40	1.696	3.70	12/19/2016 22:20	4.63	5.28	1.794	3.49	12/19/2016 22:40	4.43	1.30	0.903	0.40
1/18/2017 10:15	3.12	2.35	0.920	1.43	1/18/2017 10:45	6.22	5.41	1.733	3.68	1/18/2017 10:45	5.10	5.31	1.846	3.46	1/18/2017 11:45	3.96	1.23	0.822	0.41
2/8/2017 19:55	2.72	2.31	0.889	1.42	2/15/2017 13:27	6.26	5.42	1.771	3.65	2/15/2017 13:45	9.65	5.52	2.058	3.46	2/15/2017 14:19	8.84	1.52	1.174	0.35
2/15/2017 13:01	4.07	2.34	0.912	1.43	2/15/2017 17:42	8.69	5.53	1.835	3.70	2/15/2017 17:58	8.80	5.52	2.031	3.49	3/17/2017 13:34	0.95	0.70	0.309	0.39
2/15/2017 14:57	6.73	2.58	1.222	1.36	3/17/2017 12:13	0.84	5.02	1.302	3.71	3/17/2017 12:58	0.96	4.70	1.166	3.53	6/15/2017 15:40	0.39	0.63	0.293	0.34
3/17/2017 11:40	0.40	2.05	0.606	1.44	6/15/2017 14:00	1.73	5.13	1.409	3.72	6/15/2017 14:42	1.40	4.86	1.334	3.53	6/15/2017 17:10	1.42	0.77	0.278	0.49
6/15/2017 13:35	0.47	2.09	0.666	1.42	6/15/2017 16:05	0.50	4.95	1.277	3.67	6/15/2017 17:00	0.61	4.63	1.148	3.48	8/31/2017 14:40	0.11	0.52	0.117	0.40
6/16/2017 15:35	0.24	2.05	0.586	1.46	8/31/2017 13:30	0.09	4.86	1.151	3.71	8/31/2017 14:05	0.05	4.41	0.899	3.51	11/21/2017 12:45	10.0	1.65	1.238	0.41
8/31/2017 12:35	0.02	1.83	0.380	1.45	11/21/2017 11:40	8.84	5.55	1.827	3.72	11/21/2017 12:15	7.45	5.77	2.173	3.60	12/19/2017 9:50	11.4	1.73	1.326	0.40
11/21/2017 11:15	6.21	2.62	1.167	1.45	12/19/2017 8:45	12.2	5.70	2.008	3.69	12/19/2017 9:15	13.3	5.99	2.384	3.61	12/19/2017 12:05	7.15	1.44	1.065	0.38
12/19/2017 8:20	8.16	2.69	1.307	1.38	12/19/2017 11:15	10.1	5.57	1.858	3.71	12/19/2017 11:45	11.9	5.43	1.968	3.46	1/11/2018 10:50	11.0	1.63	1.207	0.42
12/19/2017 10:40	5.45	2.51	1.055	1.46	1/11/2018 9:28	11.0	5.63	1.918	3.71	1/11/2018 10:10	9.81	5.51	2.032	3.48	1/23/2018 11:00	3.29	1.02	0.628	0.39
1/11/2018 9:01	8.78	2.74	1.216	1.52	1/11/2018 12:18	13.3	5.74	2.041	3.69	1/11/2018 12:44	14.6	5.90	2.418	3.48					
1/11/2018 11:53	9.34	2.81	1.386	1.42	1/23/2018 10:10	3.83	5.30	1.579	3.72	1/23/2018 10:35	4.23	5.17	1.708	3.46					
1/23/2018 9:40	0.33	2.05	0.605	1.45															
OFFSETS:				1.44					3.70					3.51					0.40

APPENDIX A

Equipment Specifications

HACH FH950 HANDHELD FLOW METER

Applications

- Wastewater
- Collection Systems
- Environmental

The perfect handheld solution for wastewater and environmental flow monitoring.

Knowledge gained through years of in-the-field flow measurement experience has come together in the Hach FH950 Handheld Flow Meter. Designed for use in both environmental and sewer/wastewater flow measurement scenarios—whether you're profiling streams and rivers or providing redundant verification of wastewater flow data—even the smallest hassles have been addressed. And the result for you? Massive time savings. From the field to the office, the Hach FH950 increases your efficiency at every turn.

Designed for Accuracy and Efficiency

The lightweight, battery-powered Hach FH950 was designed to provide accurate velocity and level measurements while simplifying the entire measurement process in rugged field environments. Multiple user-friendly features designed into the FH950 allow you to quickly and easily determine stream velocities for required discharge measurements, calibrate area velocity flow meters, or verify primary devices such as weirs and flumes.

Easy Programming and Data Transfer

The FH950's rugged, lightweight and user-friendly design allows for easy set-up, operation and data management. With an easy-to-use, menu-driven user interface that is readable even in bright sunlight, the FH950 has the ability to store both velocity and level information right within the meter, minimizing field time by up to 50%. Once the data is collected, simply download to a PC via the USB connection, eliminating the need for labor intensive manual data transfer.

Maintenance-Free Electromagnetic Sensor

Available with either Velocity or Velocity and Level capabilities, the FH950's electromagnetic sensor has no moving parts and never requires mechanical maintenance, making it one of the lowest maintenance solutions on the market.

Smart Sensor Capabilities

With an innovative and compact sensor shape with intelligently-designed flow characteristics, the FH950 delivers reliable measurements at low velocities, in very shallow water, and in turbulent flow conditions. It even takes accurate readings in sediment, weed or organic debris-choked water. Plus, with an optional pressure cell for automatic level measurement and sensor positioning, the Hach FH950 is known for having as much brain as it has brawn.

Quickly profile streams and rivers. Easily verify other metering tools or use to select optimal monitoring sites.

Specifications*

Sensor		Battery Life Gauge	5 segment bar graph				
VELOCITY MEASUREMEN Method	OCITY MEASUREMENT hod Electromagnetic		18 hours heavy typical day use [†] ; 68°F (20°C)				
Accuracy	$\pm 2\%$ of reading ± 0.05 ft/s (± 0.015 m/s) through the range	[†] Defined as 30 minutes of set up, 6 one-hour periods of continuous use with se active and display at maximum brightness, 30 minutes of sleep mode between periods, data download and power off.					
	0 to 10 ft/s (0 to 3.04 m/s); ±4% of	Battery Charger	AC wall outlet charger				
	reading from 10 to 16 ft/s. (3.04 to 4.87 m/s)	USB Connector	Type Mini-B, 5-pin, rated to IP67 when capped				
Zero Stability	±0.05 ft/s (± 0.015 m/s)						
Resolution	0.01 value <100; 0.1 value <1000; 1.0 value ≥1000	USER INTERFACE AND PF Graphics Display	ROGRAMMING Color, LCD; 3.5" QVGA, transflective				
Range	0 to +20 ft/s (0 to +6.09 m/s)		(readable in direct sunlight)				
		Measurement Resolution	n0.01 value <100; 0.1 value <1000; 1.0 value ≥1000				
Method	Diaphragm type: Absolute pressure	Keypad	Alpha-numeric				
	with single point calibration	Operating Modes	Real-time, Profiling				
Accuracy (static)	The larger of $\pm 2\%$ of reading or	Profiling Types	Stream, Conduit				
	temperature and static non-flowing water.	Conduit Shapes	Circular, Rectangular, Trapezoidal, 2/3 Egg, Inverted 2/3 Egg				
Range	0 to 10 ft (0 to 3.05 m)	Stream Entries	Fixed, Non-Fixed Stations				
Resolution	0.01 value <100; 0.1 value <1000; 1.0 value ≥1000	Firmware	Sensor and portable meter firmware are field upgradeable via USB				
Minimum Water Level	1.25 in (3.18 cm)	Noise Rejection	User selectable 50Hz, 60Hz				
GENERAL ATTRIBUTES Material Environmental Rating	ABS, glass-filled IP68	Units of Measure	Velocity: ft/s, m/s, cm/s, mm/s Flow: ft ³ /sec, million gal/day, gal/day, gal/min, m ³ /sec, m ³ /min, m ³ /hour, m ³ /day, liters/s, liters/min Level: in, ft, m, cm, mm				
Dimensions of Sensor	4.7" L x 1.7" W x 2.5" H	Stream Flow Calculation	Mean-section, Mid-section				
	(11.9 cm L x 4.3 cm W x 6.3 H cm)	Diagnostics	Self test, keypad, display, event log				
Cable MaterialPolyureCable Lengths65.20	Polyurethane jacketed 6.5, 20, 40, and 100 ft.	Conduit Profile Methods	0.9 x Vmax, 0.2/0.4/0.8, velocity and level integrator, 2D				
Jan San San San San San San San San San S	(2, 6.1,12.2, and 30.5 m)	Stream Profile Methods	1, 2, 3, 5 and 6 point (Velocity method - USGS and ISO)				
Portable Meter		File Types	Real-time, Profiling, Event Log				
GENERAL ATTRIBUTES Material	Polycarbonate with a thermoplastic	Profiles	Data storage for up to 10 profiles with 32 stations per profile.				
	elastomer (TPE) overmold	Maximum Number of	Three each with up to 75 readings				
Environmental Rating	IP67	Real-Time Files	captured by the user.				
Dimensions of Portable Meter	8.6" L x 3.7" W x 2.1" H (21.8 L x 9.3 W x 5.3 H cm)	Language Support	English, Bulgarian, Chinese, Czech, Danish, Dutch, Finnish, French, Corman, Graek, Hungarian, Italian				
Storage Temperature Range	-4 to 140°F (-20 to 60°C)		Japanese, Korean, Polish, Portuguese, Romanian, Russian,				
Operating Temperature Range	-4 to 131°F (-20 to 55°C)		Slovenian, Spanish, Swedish, Turkish				
Battery Charge Temperature Range	32 to 104°F (0 to 40°C)		*Subject to change without notice				
Battery Type	Lithium-Ion, rechargeable		Cabject to charige without Holice.				

hachflow.com

Dimensions

In inches and [millimeters].

Ordering Information

FH950 Portable Flow Meter System

System includes portable flow meter, electromagnetic sensor with specified cable length, universal sensor mount, USB cable, wading rod mount, power supply/charger, neck strap, thumb screw kit, soft case, and disposable cloth for cleaning.

FH950 Meter and Sensor System	FH950.	1	X	X	X	X
Portable Meter (Hach FH950, with User Manual)	1					
Electromagnetic Sensor (Velocity)		0				
Electromagnetic Sensor (Velocity and Level)		1				
Cable Length						
6.5 foot (2m)				0	0	5
20 foot (6.1m)				0	2	0
40 foot (12.2m)				0	4	0
100 foot (30.5m)				1	0	0

Replacement Parts & Accessories

FH950 Portable Meter

FH950.1 FH950 Handheld Flow Meter (includes battery, battery charger and meter), English

Electromagnetic Sensors

EM950.0005	Velocity Sensor w/6.5 ft (2 m) cable
EM950.0020	Velocity Sensor w/20 ft (6.1 m) cable
EM950.0040	Velocity Sensor w/40 ft (12.2 m) cable
EM950.0100	Velocity Sensor w/100 ft (30.5 m) cable
EM950.1005	Velocity and Level Sensor w/6.5 ft (2 m) cable
EM950.1020	Velocity and Level Sensor w/20 ft (6.1 m) cable
EM950.1040	Velocity and Level Sensor w/40 ft (12.2 m) cable
EM950.1100	Velocity and Level Sensor w/100 ft (30.5 m) cable

Accessories

9073400	Fabric Carrying Case
9073600	Lithium Ion Battery
9072600	Battery Charger
9070800	USB Cable, 3 ft (1 m)
75015	Universal Sensor Mount
9071700	Adjustable Meter Mount
9073500	Wipe Cloth, used for cleaning
9073200	Sensor Thumb Screw Kit
9072700	Lanvard

Contact factory for information on Standard and Top Setting Wading Rod Kits or Suspension Cable Kits. NOTE: Additional cable cannot be added after order is entered.

HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: Outside United States: **hachflow.com** 800-368-2723 tel 970-619-5150 fax 970-622-7120 tel

fax hachflowsales@hach.com

LIT2568 Rev 6 Printed in U.S.A. @Hach Company, 2016. All rights reserved. In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

Innovations in Water Monitoring

Spec Sheet

Rugged TROLL[®] 100 and 200 Data Loggers

Rugged TROLL 100 and 200 Data Loggers are designed for long- and short-term groundwater and surface water monitoring. These non-vented (absolute) water level data loggers measure and record changes in water level, pressure, and temperature. Ensure accurate results by using a Rugged BaroTROLL® Data Logger. All loggers are compatible with the user-friendly VuSitu™ Mobile App and Win-Situ® PC Software.

Affordable Titanium Data Loggers

- · Get reliable data at a budget-friendly price.
- Use in harsh environments. Solid titanium construction offers chemical- and corrosion-resistance and outlasts specially-coated data loggers.
- Select the appropriate logging mode for your project: Linear, Fast Linear, or Event.

Flexible Deployment Options

- Deploy zero-maintenance loggers in flood-prone areas, high-humidity environments, and remote locations.
- Choose the cable length and termination type that works best for your project.
- Use suspension wire and backshell hanger for applications requiring minimal instrument access.

World Class Support

- Receive 24/7 technical support and online resources.
- Order data loggers and accessories directly from our website.
- Get guaranteed 7-day service for maintenance (U.S.A. only).

CALL OR CLICK TO PURCHASE OR RENT

1-800-446-7488 (toll-free in U.S.A. and Canada) **1-970-498-1500** (U.S.A. and international)

WWW.IN-SITU.COM

Simplified Setup and Data Retrieval

- Use the VuSitu Mobile App to consolidate all site information on your smartphone and tag data with site photos and GPS coordinates. Simply connect the instrument to a Wireless Rugged TROLL Com, launch the mobile app, and start reading results.
- Save time and reduce errors with the intuitive Win-Situ Software platform. Quickly program loggers, download data, graph results, and more.
- Connect a cabled logger to a telemetry system, radio, controller, or a SCADA/PLC system via Modbus/RS485 or SDI-12 (with the Rugged TROLL 200 and Rugged BaroTROLL).
- Integrate with In-Situ Tube and Cube Telemetry Systems and HydroVu[™] Data Services for real-time feedback on your remote monitoring sites.

Applications

- Coastal wetland and estuary research
- Crest stage gaging and stream gaging
- Drilling and well development
- Flood and storm surge monitoring
- Landfill leachate monitoring

Rugged TROLL® 100 and 200 Data Loggers

Spec Sheet

General	Rugged TROLL 100 & 200	Rugged BaroTROLL
Temperature ranges ¹	Operational: 0-50° C (32-122° F) Storage: -40-80° C (-40-176° F) Calibrated: 0-50° C (32-122° F)	Operational: 0-50° C (32-122° F) Storage: -40-80° C (-40-176° F) Calibrated: 0-50° C (32-122° F)
Diameter	2.62 cm (1.03 in.)	2.62 cm (1.03 in.)
Length	14.43 cm (5.68 in.)	14.43 cm (5.68 in.)
Weight	137 g (0.30 lb)	137 g (0.30 lb)
Materials	Titanium body; Delrin® nose cone, hanger, backend	Titanium body; Delrin nose cone, hanger, backend
Output options	Rugged TROLL 100: USB via docking station; Wireless Rugged TROLL Com Rugged TROLL 200: USB via docking station; Wireless Rugged TROLL Com; Modbus/RS485 or SDI-12 via Rugged TROLL 200 Cable	USB or RS232 via docking station; Modbus/RS485 or SDI-12 via Rugged TROLL 200 Cable; Wireless Rugged TROLL Com Device
Battery type & life ²	3.6V lithium; 10 years or 2M readings	3.6V lithium; 10 years or 2M readings
External power	Rugged TROLL 100: NA Rugged TROLL 200: 8-36 VDC	8-36 VDC
Memory Data records ³ Data logs	2.0 MB 120,000 Rugged TROLL 100: 1 log Rugged TROLL 200: 2 logs	2.0 MB 120,000 2 logs
Fastest logging rate	1 per second	1 per minute
Fastest output rate	Rugged TROLL 200 only Modbus & SDI-12: 1 per second	Modbus & SDI-12: 1 per second
Log types	Linear, Fast Linear, and Event	Linear
Sensor Type/Material	Piezoresistive; Ceramic	Piezoresistive; Ceramic
Range	9 m (30 ft) (Burst: 18 m; 60 ft) 30 m (100 ft) (Burst: 40 m; 134 ft) 76 m (250 ft) (Burst: 112 m; 368 ft)	7 to 30 psi; 0.5 to 2 bar
Accuracy ⁴	$\pm 0.1\%$ full scale (FS) typical $\pm 0.3\%$ FS max.	±0.1% FS typical ±0.3% FS max.
Resolution	$\pm 0.01\%$ FS or better	$\pm 0.01\%$ FS or better
Units of measure	Pressure: psi, kPa, bar, mbar, mmHg Level: in., ft, mm, cm, m	Pressure: psi, kPa, bar, mbar, mmHg, inHg
Temperature Sensor	Silicon	Silicon
Accuracy	±0.3°C	±0.3°C
Resolution	0.01° C or better	0.01° C or better
Units of measure	Celsius or Fahrenheit	Celsius or Fahrenheit
Warranty	2 years	2 years

Notes: ¹Temperature range for non-freezing liquids. ²Typical battery life when used within the factorycalibrated temperature range. ³ 1 data record = date/time plus 2 parameters logged for a total of 360,000 data points, no wrapping. ⁴Across factory-calibrated pressure and temperature ranges. Delrin is a registered trademark of E.I. du Pont de Nemours & Co. Specifications are subject to change without notice. Android is a trademark of Google Inc.

VuSitu Mobile App for Wireless Connection

Use the VuSitu Mobile App to view results instantly from your Android[™] smartphone or tablet when connected to the Wireless Rugged TROLL Com. Consolidate all site information and tag data with site photos and GPS coordinates. Log data to your smartphone and download results in a standard .csv file format.

Rugged TROLL[®] 200 Cable

Access real-time data by using Rugged TROLL 200 Cable with a Rugged TROLL 200 or a Rugged BaroTROLL. Use a Cable Suspension Kit to anchor the cable in place. Available configurations:

- Modbus/RS485 stripped-and-tinned cable or SDI-12 stripped-and-tinned cable—Use with PLC, telemetry system, or logger.
- Modbus/RS485 top-of-well cable—Use with Rugged TROLL Com Device and a RuggedReader[®] Handheld PC or a PC.

Jacket options	TPU (thermoplastic polyurethane)
Conductors	4 conductors, 24 AWG, polypropylene insulation
Diameter	Cable: 5.1 mm (0.200 in.) Connector: 26.1 mm (1.03 in.)
Cable lengths	Modbus/RS485: Customizable up to 300 m (1,000 ft) SDI-12: Standard lengths up to 60 m (200 ft)
Minimum bend radius	5X cable diameter
Break strength	68 kg (150 lbs)

Wireless Rugged TROLL[®] Com Communication Device

Use the Wireless Rugged TROLL Com Device for communication between a cabled Rugged TROLL 100/200 or a cabled Rugged BaroTROLL and a RuggedReader Handheld PC or a laptop/PC.

Operating temp. range	-5-50° C (23-122° F), 95% relative humidity, non- condensing
Storage temp. range	-20-50° C (-4-122° F), 95% relative humidity, non- condensing*
Materials	PC/ABS blend, Silicon, Urethane, Stainless Steel, Brass, Santoprene, Poron, Polyethylene, Versapor, Titanium, PEEK, Viton
Environmental rating	IP67
Dimensions (LxWxH) Weight (with batteries)	6.3 x 1.710 x 1.210 in. 165 g
Communication Protocol	Android: SPP; Windows: SPP or USB
Output connection	Bluetooth and USB communication
Battery type	1 3.7V 8600mWHr Lithium Rechargable cell (UBBL19-FL)
Charging requirements	5VDC USB charger (1A or 500 mA)
Certifications	CE, FCC (SSSBC127-X), WEEE
Warranty	1 year

(FC 🕅

CALL OR CLICK TO PURCHASE OR RENT

1-800-446-7488 (toll-free in U.S.A. and Canada) **1-970-498-1500** (U.S.A. and international)

WWW.IN-SITU.COM

APPENDIX B

Ballinger Creek Manual Discharge Field Sheets

	Herrera -	Ballinger Creek	- Stream	Flow F	Data Sheet	
Flow Station # 2	C-1	Gauge Start Height	1.93		Stream: Ballinger C	reek
Date: 12/11/1		Start Time: 1000	<u> </u>		Client: City of Shoreline	
Observer Initials: /	1<	Gauge End Height:	197		Method: Wading	/ Culvert
	4.0	End Time: 1005		201-0		,
Gauging Assessmen	nt: Circle One	*(within % deviati	on from act	ual disch	arge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10)%*)		
Flow Comments le.	g. turbulence arour	nd gauge, lots of ma	terial in wat	er, etc.)		
BASE Fren	U CONDITO	NS' LOW +	scan a	ier	the tech	
Cross Section Locat	ion:	BC. ZOMID	CO BEFO	EEN	TRAING COW	apr-
Sketch of XS Locatio	on: June STA	fincer CULVIC				T
	CAVE	L'smm	WILLAT CVI	-127		
	CUMPY VEC	ROVELLEULN	in			
Control Feature/Co	Indition: BIED CAN	& //sect				
Weather: < UNI	M+COLD,	~ 34°F				
Notes (e.g. equipme	ent problems, flow I	olockages, unusual s	tream condi	tions, e	tc.):	
CULVISTI 11	O PEPTH O.	IEFT/VELC	0.75	-ps1	MANUAL DISC	
INCIET CULURY	5:25FT C	namigra C	MP			
SIDE CULV-A	T- i.d FT 6	DIA CONT / OV	TLET: 2	2TA	IA CONCASC TE	- FIFE
Measurement Data	1	RB Distance (ft):			LB Distance (ft):	
Hosizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. D	ist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19			
2			20			4
2			20		l	
5			21			
4			22			
5			23	<i>x</i>		
6			24			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7			25			
8			26			-
9			27		U	
Time / SG:			Time / SG:		Δ	
10			28		19	
11	,		29	$\overline{}$		
12			30	1		5
13			31			21 · · · ·
14			32			
15			33			<u> </u>
16			34			
17			25	•		
10			35			
18			30 Time / CC			
Time / SG:			Time / SG:			
Flow (cfs):).] (Entered into	o Balling	er Creek Database?	7
	- 1	7.2.007.0047.0000	Date: (2	117	(6 Initials:	XHT

	Herrera - Ballinger Creek - Stream Flow Data Sheet						
Flow Station #:	3C-2	Gauge Start Height	: 4.92 ft	Stream: Ballinger C	reek		
Date: 2016-1;	2-16	Start Time: \0	: 36	Client: City of Shore	eline		
Observer Initials:	JB/AS_	Gauge End Height:	4.92 \$1	Method: (Wading)	/ Culvert		
		End Time: 🛝	0:56				
Gauging Assessmen	nt; Circle One	*(within _% deviat	ion from actual discl	narge)			
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)				
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	FLOW			
PISE 1 COL				1			
Cross Section Locat	ion: 05 ft	upstream of	pellestring 51	Alange			
Sketch of XS Locatio	on:		-lut	*	<i>C</i> 1,		
					TPHB		
				it grigesta			
Control Feature/Co	ndition:	-1 0					
Weather: CC				A.a. 1.			
Notes (e.g. equipmo	ent problems, flow i	olockages, unusual s	stream conditions, e	tc.j:			
Measurement Data		RB Distance (ft):	1.0	LB Distance (ft):	3.0		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1 .0	0	0	19 8.0	O	(\mathcal{O})		
2 D.U	0.05	0	20				
3 0.8	0.1	Q	21	· · · · · · · · · · · · · · · · · · ·			
4 2.2	0.4	0.17	22				
5 7.6	0.55	0,16	23				
6 2.0	0,55	0.18	24				
7 2.1	0.55	0.20	25				
8 2.9	(),52	0.2.2	26				
g 9.7	0.51	0.17	27	· · · · · · · · · · · · · · · · · · ·			
Time / SG: 492	(1044)		Time / SG:				
10 4.6	0,50	0,15	28				
11 4.0	0.44	0.15	29				
12 4.4	0.50	0.08	30				
13 4.9	0.47	0.05	31				
14 6.2	0.33	0.05	32		,		
15 6.6	0.22	0.04	33				
16 B·O	0.15	0.01	34				
17	0:05	ð	35				
18	0.05	\mathcal{O}	36				
Time / SG: 4 99 (1052) Time / SG:							
Flow (cfs):	27		Entered into Balling	ger Creek Database?	Y		
0.	04		Date: 12/19/16	Initials:	'A9		

	Herrera - I	Ballinger Creek	- Stream Flow [Data Sheet	· · · · ·
Flow Station #: 3	C-3	Gauge Start Height	:4.55	Stream: Ballinger C	reek
Date: 12/16//(р	Start Time: 05	5	Client: City of Shore	eline
Observer Initials: 🚽	49	Gauge End Height:	4.55	Method: Wading	/ Culvert
		End Time:) (\ O			
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual disch	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. BASE FON	g. turbulence arour	$\frac{1}{3} \frac{1}{2} \frac{1}$	terial in water, etc.) レルー・レート	A Fran	
Cross Section Locat	ion CVLVIA	5/25TA AN	ic Nic		
Sketch of XS Locatio	LOWLE 25-14 LOWLE 25-14 NE	CE BATTY AGAR (BATTY AGAR (BRUCH	KING CK/ CKPS ZOC		
Control Feature/Co	ndition: Z cuur	sets / inco			
Weather: SUNM	2+CELD	(~36-F)		0	
Notes (e.g. equipmine come	ent problems, flow b	plockages, unusual s	tream conditions, e	tc.): -CO.35FP	5
UPPER CULUE	LAT-2FT DA	OFT OFT	5 - Nº Flor		
Measurement Data	i l	RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2 5			20		
3		Nr.A.	21		_
4		VH	22		
5 8			23	- 325	
6			24		
7			25		
8			26		
9			27		
- Time / SG:	·		Time / SG:	I	
10			28		
11			29		
12			30		
13			31		
14			32		
15			33		
16			34		
17			35		
18			36		
Time / SG:	·		Time / SG:		
Flow (cfs):			Entered into Balling	rer Creek Database?	Ч
. O. O.	40		Date: [2[19]16	5 Initials:	AS

	Herrera - Ballinger Creek - Stream Flow Data Sheet							
Flow Station #:	30-4	Gauge Start Height	: 0.80 ft	Stream: Ballinger C	reek			
Date: 2016 - 1	2-16	Start Time: \3	VOD	Client: City of Shore	eline			
Observer Initials:	AS, JB	Gauge End Height:	13-080	Method: Wading	/ Culvert			
		End Time: (3	10B					
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual disch	harge)				
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)					
Flow Comments le. BASGE FLOW	Flow Comments (e.g. turbulence around gauge, lots of material in water, etc.): BASG FLOW CEND (TRONS, LOW + VRM, CLRAR							
				4 NO.1 AV	TP Calubra			
Cross Section Locat	ion: DS of B	<u>C-4 30</u>	US of U	DON ALOUP I	K LS GADIONS			
Sketch of XS Locatio	on: Aloce		E VILLE	E to BRU	54			
Control Feature/Co	ndition:							
Weather:	COLD É	CLESR						
Notes (e.g. equipm	ent problems, flow b	olockages, unusual s	tream conditions, et	tc.):	と、理らり			
RB	SMALL D	EBRIS Som	5 Wrank	DD7				
	to Us, the	WING SIME						
Measurement Data		RB Distance (ft):	0.4 \$+	LB Distance (ft):	5.6 ft			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)			
1 0.4	0	0	19 5.6		0			
2 0.7	0.05	0	20	-				
3 \.D	0.22	-0.18	21					
4 1.9	0.28	-0.17	22					
5 1.2	0.25	- 0.14	23					
6 L .a	0.25	-0.13	24	-				
7 2.2	0.25	-0.17	25					
8 2.5	0.30	-0.05	26					
9 2.8	0.45	- 0.07	27					
Time / SG:			Time / SG:					
10 3.1	0.55	0.15	28					
11 3.年	0.62	0.25	29	n de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la				
12 3 8	0.62	0.40	30					
13 4·D	0.69	0.61	31					
14 4.3	0.75	0.71	32		M			
15 4.6	0.75	0.65	33	а. 				
16 4.9	0.71	0.56	34					
17 5.2	0.70	0.25	35					
18 5.5	0.60	0	36					
Time / SG:			Time / SG:					
Flow (cfs):	1.77		Entered into Balling	ger Creek Database?	Ч.			
0.617 Date: [2] 19/16 Initials: AS								

	Herrera - I	Ballinger Creek	- Stream Flow [Data Sheet	
Flow Station #: BC	2-1	Gauge Start Height	: 240 FT	Stream: Ballinger C	reek
Date: 12/19/16		Start Time: 2!	38	Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height:	2.4007	Method: Wading / Culvert	
		End Time: 214	0		
Gauging Assessmer	it: Circle One	*(within _% deviati	ion from actual discl	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. M.NIMALTU CULVERTS	g. turbulence arour ふるいしんこと Aの	id gauge, lots of ma しこしへの しれらと ,	terial in water, etc.) こへい けをみた C	OBBLE MOVIN	6 TARCUL 17
Cross Section Locat	ion: WWLAT	INCET IN	BINDGAUE		
Sketch of XS Locatio	on:				
Control Feature/Co	ndition: こしししい	RTS/OK			
Weather: STEA	DY MAIN, ~	42°F			
Notes (e.g. equipme CULVILAT D CULVILAT	ent problems, flow lo 「アナオーの(ノルーのハイフィー	05 FT 4.10 FFS	stream conditions, e	tc.):	
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2			20		
3			21		
4		~	22		
5			23		
6		1	24		
7			25		
8			26		
9			27		
- Time / SG:			Time / SG:		
10			28		
11			29		
12			30		
13			31		
14			32		
15			33		
16			34		
17			35		
10			26		
Time / SC+		1	Time / SG:		
			Television Della		2
FIOW (CTS): 4,1	6			ger Creek Database? 6 Initials:	AS

		Herrera -	Ballinger Creek	- Str	eam Flow [Data Sheet	
Flow St	tation #: B	c-2	Gauge Start Height	: 5	.41	Stream: Ballinger C	reek
Date:	2016-	-12-19	Start Time: 2	2:	00	Client: City of Shore	eline
Observ	er Initials:	JB. AS	Gauge End Height:	6	5.38	Method Wading	/ Culvert
		, ,	End Time: 2	2	.15		
Gaugin	g Assessmen	t: Circle One	*(within _% deviati	ion fr	om actual disch	arge)	8
Excel	llent (2%*)	Good (5%*)	Fair (8%*)	P	oor (10%*)	_	
Flow Co	omments (e.) Mののテル	FLOW, TUP	id gauge, lots of ma LB1 D	terial	in water, etc.)		
Cross S	ection Locati	ion:			14		·····
Sketch	of XS Locatio	on:	A R		22	K	
Contro	I Feature/Co	ndition:	1-12-		onlder	o gaze	
Notes		ant problems flow h	lockages unusual s	trear	a conditions le	te):	- 13
Notes	(e.g. equipine	ent problems, now i	noekages, anasaars		ir contaitionis, c		
							_
Measu	rement Data		RB Distance (ft):		32	LB Distance (ft):	
Horizo	on. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Hor	izon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1	0.6	Ø	Ø	19	13.2	0.05	Ø
2	0-71.3	0.35	0.47	20	13.9	Ø.	Ø,
3	142.0	400.5	0.98	21	14.6	Ð	Ø
4	2127	095-45	1.07	22			-
5	2,03.4	0.95	1115	23		-	
6	3154.1	0.9	111-	24			
7	4.8	0.3	1.28	25	2 I		
8	5.5	0.85	1.27	26			
9	6.2	0.75	0.86	27			1
Time /	SG:			Time	e / SG:	· · · · ·	
10	6.9	0.6	0.56	28	8		
11	7.6	0.5	0.36	29			
12	8.3	0.35	0.17	30			
13	9.0	0.1	0.02	31			That is a set
14	9.7	0,1	0.03	32			
15	10.4	0.15	0.05	33	- 1 - C		
16	11.1	0.15	0:02	34			
17	11.8	0.1	0.04	35			
18	12.5	0.05	0	36			
Time /	SG:	/		Time	: / SG:		
Flow (c	:fs): //	11		Ente	red into Balling	er Creek Database?	4
	4.	16		Date	: 12/20/16	Initials:	AP

	Herrera - Ballinger Creek - Stream Flow Data Sheet						
Flow Station #: (36-3	Gauge Start Height	5.29	Stream: Ballinger C	reek		
Date: 2016-	12-19	Start Time: 2	2:19	Client: City of Shore	eline		
Observer Initials:	-JB.AS	Gauge End Height:	5-26	Method: Wading	/ Culvert		
	<i>,</i>	End Time: 2	2:24				
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual discl	narge)			
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)	2 2 0000 <u>0</u> 1 2			
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	. ACOGNAT	5 TORK (HANGE		
STREAM fro	W OF WALLA	E ANOUND 6	ACE, CAUSIA	2 magical	e rolegoering		
FLOW RUSO	AT-PEACES 1			3			
Cross Section Locat	ion:	and the same some	20. 400	0			
Sketch of XS Locatio	on:	- A CORE	ett qu	u-			
	-	L ES UPP	in 25 d	cmp	· 9		
Control Feature/Co	ndition:	The second second					
Weather:	ZAINY						
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	tream conditions, e	tc.):			
	COBSLE	1 and in	ENTRALE	To Lower a	CULIVERLY		
			_				
Measurement Data		RB Distance (ft):		LB Distance (ft):			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1 LOWER	1.55	1.45	19				
2			20_	A			
3 UPPBR	0.5	1.34	21				
4	х. Х		22				
5			23	~ 5			
6			24				
7			25				
8			26				
9			27	×			
Time / SG:			Time / SG:	·			
10			28				
11			29				
12			30				
13			31		*		
14			32				
15			33				
16			34				
17			35		/		
18			36				
Time / SG:			Time / SG:				
Flow (cfs): 7 GI	+0011	1.7	Entered into Balling	ger Creek Database?	4		
5.0(1 0.22 = 4.	U 5	Date: (2/2c/	(G Initials:	AS		

	Herrera - I	Ballinger Creek	- Stream Flow D	Data Sheet	
Flow Station #:	BC-M	Gauge Start Height	1.30	Stream: Ballinger C	reek
Date: 2016	-12-16	Start Time: 22	2:35	Client: City of Shore	line
Observer Initials:	JB. AS	Gauge End Height: 1.29		Method: Wading	/ Culvert
		End Time: 7	2:46		
Gauging Assessmen	t: Circle One	*(within _% deviati	on from actual disch	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. MiNIMAL 7	g. turbulence aroun - CRIULANCE	id gauge, lots of ma Ahovno 6461	terial in water, etc.): と、FLow TLR /	RO	
Cross Section Locat	ion:	1.11			
Sketch of XS Locatio	on:	ADION WAS		5-52	
	K	1 E	* MART	strubi	
Control Feature/Co	ndition: 6 ABYE	J WALL OK			
Weather: D	AINY			i	
Notes (e.g. equipma Notation Production	ENT 9656NU	blockages, unusual s (슈)	stream conditions, e	tc.):	
Measurement Data		RB Distance (ft):	0.3	LB Distance (ft):	7.9
Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.3	CD .	Ø	197.5	0	a
2 0,7	0.07	0.)	20 7 9		<u></u>
3	110	0.5	21		
4 115	1.05	0.9	22		
5 1.9	1.05	0,55	23		
5 7.3	1.1	0.25	24		
7 2 7	1.2	014	25		
e 3.1	127	05	26		
0 315	1 4	0.8	27		
Time / SG:		0.0	Time / SG		
10 7 .0	1.4		28	[· · · · · · · · · · · · · · · · · · ·	
11 4.2	1.47	LIL	29		
17 /)	1.5	1.07	30		
12 (1)	LUK	DOR	31		
10 51	1.00	6.10	37		
	6.4	DIE	33		
16 19	0.24	0.10	34		
10 6.7	0.00	K	134 13E		
	0116		22		
	0.02	<u> </u>	JD Time / SC:		
nme / 56:				nen Creek Detalaar	4
Flow (cfs): 4 6	26		Entered into Ballin	ger Creek Database	4
	F		Date: 12/20/1	G Initials:	

	nerrera - I	bailinger Creek	- Stream Flow L		
Flow Station #:	BC-1	Gauge Start Height	235	Stream: Ballinger Creek	
Date: JAN	18,2017	Start Time:	0:15	Client: City of Shore	eline
Observer Initials:	JB, AS	Gauge End Height: \0 1		Method: Wading	/ Culvert
	1.2.2	End Time: 2	:35 <		
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual disch	narge)	
Excellent (2%*)	(Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. FLOWS ECL AROUND C	rational and the second	ELATELY TU	LEID, MCNIMA	TURBULAN	KE ORS.
Cross Section Locat	ion: CULVER	<u>र</u> ाः	" BIRD CAC	E-	
Sketch of XS Locatio	on: S				
	CULVERT ST)=		а 11	
Control Feature/Co	ndition: Cul	VERT / FILE	EFCOWIN		
Weather: PA	IN, HIGH CL	OUDS MO	DERATE TEN	1P	
Notes (e.g. equipm	ent problems, flow I	olockages, unusual s	tream conditions, e	tc.):	
CULVERT	DEPTH ! (0.65			
C KLVELT	- VELOCITY	3.08			
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2	-		20		
3			21		
4			22		
5			23		
6			24		
7			25		
8			26		
9			27		
Time / SG:	1	L	Time / SG:	<u> </u>	L
10			28		
11			29		
12	·	1	30		
13			31		Ŷ
14			32		
15			33		
16			34		
17		·	35		· · · · · · · · · · · · · · · · · · ·
10			36		
	l		Time / SG		
			Fintered line D. III		LAMA
	2			ger Creek Database? 7- Initials:	AP

	Herrera -	Ballinger Creek	- Stream Flow	Data Sheet	
Flow Station #:	BC-2	Gauge Start Height	5.42	Stream: Ballinger C	reek
Date: 2014	-01-18	Start Time:	10:39	Client: City of Shore	eline
Observer Initials:	JB AS	Gauge End Height:	5.40	Method: Wading	Culvert
	,	End Time:	10:50	· · · · · ·	
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual disc	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	CUND GAE	k -
	NIC	Notup	STREAM)		
Cross Section Locat	ion: 0.5	f+ US of	f foot b	LIDGE	
Sketch of XS Locatio	on:				
	NO CHANG	= Feom 12/	19/2016		
Control Feature/Co	ndition:				
Weather: 12 Ja	IN MODE	AT TEMP			
Notes (e.g. equipm	ent problems. flow I	olockages, unusual	tream conditions. e	tc.):	
NoUNVEU	AL STREA	M CONDE	Tens obsi	NUCY	
I					
			10.200.00		8
Measurement Data	1	RB Distance (ft):	0.8	LB Distance (ft):	13.7
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 D.B	ø	Ø	19 3.4	0.1	0.05
2 4.5	0.35	0.66	20 317	Ø	ϕ
3 2.2	0.55	0.79	21		
4 2.9	0.9	1.09	22		
5 3.6	0.9	1.30	23		
6 4.3	0.95	1.56	24		
7 5.0	1.0	1.64	25		
8 5.7	1-0	1-28	26		
9 6.4	0.8	0.98	27		
Time / SG:			Time / SG:		
10 7 · 1	0-6	0.66	28		
11 7·8	0.4	0.45	29		
12 B.S	0.3	0.47	30		
13 9.2	0.2	0.40	31		
14 9.9	0.15	0.20	32		
15 10.6	0.15	0.10	33		
16 •3	0.2	0.10	34		
17 12.0	0.15	0.09	35		-
18 12.7	0.1	0.05	36		
Time / SG:			Time / SG:		
Flow (cfs): /			Entered into Ballin	ger Creek Database?	4
0- 4			Date: 1/ (9/ (6	nitials:	AC

	Herrera - I	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: 🛛 🤶	36-3	Gauge Start Height	5.32	Stream: Ballinger C	reek
Date: 2017	-01-18	Start Time: 💦 🛝	1:13	Client: City of Shore	line
Observer Initials: 🔍	JB. AS	Gauge End Height:	5.29	Method: Wading	/ Culvert
		End Time:	11:15		
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual disc	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour ปรุ่มธุณางุร	d gauge, lots of ma @ GAGE	terial in water, etc.) ; マビニーロンご ;	2 - WATER -, U	PSTREAM
Cross Section Locat	ion:				
Sketch of XS Locatio	on: 2' смр: Цу 2' смр: Ци	IR JR E	A A	EZ, ?BR13 ZR1048	
Control Feature/Co	ndition:	12 21			
Weather:	sis cloud	NO KA			
				·	2
Measurement Data	l	RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2 10200	2.05		20		
3 LOVER	1.55	1.52	21		
4			22		
5 UPPER	0.55	1.53	23	1	
6			24		
7			25		
8			26		
9			27		
Time / SG:			Time / SG:		
10			28		
11			29		
12			30		
13			31		
14		· ·	32		
15			33		
16			34		
17			35		
18			36		
Time / SG	I	L	Time / SG:		
Flow (cfs): 4.0	01,1+6	= 5.10	Entered into Ballin Date: \ / (? / (=	ger Creek Database? Initials:	Y AS

	Herrera -	Ballinger Creek	- Stream	Flow	Data Sheet	
Flow Station #:	BC-4	Gauge Start Height	1.2	7	Stream: Ballinger C	reek
Date: 2017-	-01-18	Start Time:	11:36		Client: City of Shore	eline
Observer Initials:	JB. AS	Gauge End Height:	1.18	>	Method; Wading	7, Culvert
	,	End Time:	11:52	2		~
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actu	ual disc	harge)	
Excellent (2%*)	(Good (5%*)	Fair (8%*)	Poor (10)%*)	÷	
Flow Comments (e. 4 m Dichtus	g. turbulence arour of struk rev MENED E	blschuppen	terial in water	er, etc.)	ADDGTENA SCTR	CLUCED 7
Cross Section Locat	ion: @ Peran	t of comp	CLANCK	N	ARKIR	1
Sketch of XS Locatio	on: No o	Hance- From	2016	- 12	- 16	
Control Feature/Co	ndition:		3		· · · · ·	
Weather: CV	EARING ,	NO RAIN				
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	tream condi	tions, e	tc.):	
Measurement Data		RB Distance (ft):	0:5		LB Distance (ft):	7.3
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. D	ist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.5	\$0.8	ϕ	19 6.	B	0.1	Ø
2 0.85	······································	0.3	20 7.	15	Ø	6
3 1.2	0.95	0.3	21		L	/-
4 1.55	1.0	Oil	22			
5 (4	1.0	0.63	23			
6 2.25	1.1	0.66	24			
7 2.5	1.1	0.84	25			
8 2.95	1.0	1.03	26			
9 3 3	1.12	1.0	27			
Time / SG:			Time / SG:			
10 3.65	1.1	0.85	28			
11 4.0	1.15	1.0	29			
12 4.35	1.7-	[.]	30			
13 4.7	1.3	0.88	31			
14 5.05	1.3	0.68	32			
15 <u>S</u> ·U	1.3	0.40	33			
16 < .75	1.1	0.10	34			
17 6.	0.2	0.02	35	÷		
18 6.45	0.2	- 1.01	36			
Time / SG	0.4	0.01	Time / SG			-
Elow (cfc):			Entered inte	Dallin	or Crook Database?	Y
-iuw (cis): 3.0	16		Date: 1/1	a 17		AS

	Herrera - E	Ballinger Creek	- Stream Flow D	ata Sheet	
Flow Station #: RC	2-1-	Gauge Start Height:	2.3	Stream: Ballinger Cr	eek
Date: 2/8/17	7	Start Time: 195	2	Client: City of Shore	line
Observer Initials:	AS	Gauge End Height:	2.31	Method: Wading	/ Culvert
	an each an eac	End Time: 20	00		
Gauging Assessmen	t: Circle One	*(within _% deviati	on from actual disch	arge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.) MODELATE TURBID	g. turbulence aroun ていたい。Aをつ	d gauge, lots of ma ーフ らよっと	terial in water, etc.): CFREC F	ion Modre	nt-ten
Cross Section Locati	on:				
Sketch of XS Locatio	en:			α. Π	ر. رئىلى
Control Feature/Con	ndition:	-			
Weather: LIGH	TRAINIC	ocl ~ 39 C			<u> </u>
Notes (e.g. equipme	ent problems, flow t	blockages, unusual s	tream conditions, e	EC.J:	
DEPTH : 0	.le.5				
Nacour:	2.68 F.PS				
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2			20	1	
3			21		
1			22		
5			23		
6			24		
7			25		
2			26		
0			27		
Jime / SG:			Time / SG:		
10			28		
11			29		
12			30		
12			31		
14			32		
1E			33		
16			34		2
17			35		
1/	· · · · · · · · · · · · · · · · · · ·		36		
18 Time / SC:		<u> </u>	Time / SG:	<u> </u>	
			Entered into Ballin	J	Y
How (cts):	10		Entereu into ballin	Bei cicer Darangsei	L.

#: 2	30-1	Gauge Start Height	:2,34	Stream: Ballinger C	reek
2/15/1	7	Start Time: 13	10	Client: City of Shoreline	
ver Initials:	AS	Gauge End Height:	2.34	Method: Wading	/ culvert
/		End Time:	302	1 -	
Sauging Assessme	nt: Circle One	*(within _% deviat	ion from actual discl	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Роог (10%*)		
low Comments (e.	g. turbulence aroun	nd gauge, lots of ma - MoDEMPE	terial in water, etc.) TURR(DIF	-	
Cross Section Locat	ion:			-	
ketch of XS Locati	on:				
	(C)				
ontrol Feature/Co	ndition: CULV	RETS/OK			
Neather: STR	457 HARN	MODICIATE	- INTRUS IT	7	
Notes (e.g. equipm	ent problems, flow I	blockages, unusual s	stream conditions, e	tc.):	
JOILY LH	0.03			172	
VELOCIVI	4.01 FPS				
Apacurement Data	AI/A	RB Distance (ft)		LB Distance (ft)	
Aeasurement Data	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon Dist (ft)	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft)	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft)	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N)/A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time (50	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 29	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 20	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 20	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft) ime / SG: 0 1 2 3	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31 32	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31 32 33	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Measurement Data Horizon. Dist. (ft)	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31 32 33 34	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft) ime / SG: 0 1 2 3 4 5 6 7	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31 32 33 34 35	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec
Aeasurement Data Horizon. Dist. (ft) 	N) /A- Water Depth (ft)	RB Distance (ft): Velocity (ft/sec)	Horizon. Dist. (ft) 19 20 21 22 23 24 25 26 27 Time / SG: 28 29 30 31 32 33 34 35 36	LB Distance (ft): Water Depth (ft)	Velocity (ft/sec

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	1994 - 1 F
Flow Station #: B	C-1	Gauge Start Height	: 2.57	Stream: Ballinger C	reek
Date: 2.15.	17	Start Time:	456	Client: City of Shore	eline
Observer Initials: 🕇	15	Gauge End Height:	: 7 58 Method: Wading / Culvert		/ Culvert
		End Time: 1457	usa		
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual disc	narge)	×
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	:	
Cross Section Locat	ion:			11	
Sketch of XS Location	on:			5	N
Control Feature/Co	ndition: CULV	STTS / OIL			
Weather: STG	for prin.	MEQ-HE	AVY PRECI	P	
Notes (e.g. equipm	ent problems, flow b	olockages, unusual s	stream conditions, e	tc.):	
CULVERT	DOTH (5.90 FT			
(outitat)	VELOCIT I	1.23 FPS			
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2			20		
3		5	21		
4			22		
5		-	23		
6			24		
7			25	36	
8			26		
9			27		
Time / SG:			Time / SG:		-
10			28		
11		· · · · · · · · · · · · · · · · · · ·	29		
12		Ч. (8)	30	-	
13			31		
14			32		
15			33		
16			34		
17			35	1	
18			36	£	
Time / SG:			Time / SG:		
Flow (cfs):	27		Entered into Balling	er Creek Database?	4
6	-75		Date: 2/11/11	7 Initials:	Ar

	Herrera -	Ballinger Creek	- Sti	ream Flow [Data Sheet		
Flow Station #:	32-2	Gauge Start Height	:: 5	37	Stream: Ballinger C	reek	
Date: 2-15	11	Start Time: 🛛	131	7	Client: City of Shore	eline	
Observer Initials: 7	45	Gauge End Height:	5	.48	Method Wading Culvert		
	-	End Time: 133	17-				
Gauging Assessmer	nt: Circle-One	*(within _% deviat	ion fr	om actual discl	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	F	oor (10%*)		ı. E	
Flow Comments (e. Mr V i Ma	g. turbulence arour TORB VLEN	nd gauge, lots of ma	iterial こ_こ	in water, etc.)	CDILATE T	ensimo	
Cross Section Locat	ion:						
Sketch of XS Locatio	on:				a di		
Control Feature/Co	ndition: BRIDGE	ILANGE ROC	10	/ UNCHAN	ues I	1	
Weather: STEA	DY PAUN :1	MODERATE T	o H	TEAY Y AT	TIMES		
Notes (e.g. equipm	ent problems, flow I	blockages, unusual	strear	n conditions, e	tc.):		
CREAK F	cowind N	ick may					
Management Data		RP Distance (ft)		1.	LB Distance (ft):	11 6-	
Horizon Dist (ft)	Water Depth (ft)	Velocity (ft/sec)		<i>izon</i> Dist (ft)	Water Depth (ft)	/ (. C	
1 6 6		0	19	G	SUC	(6 7 7	
$\frac{1}{2}$ $\frac{1}{1}$	0.45	040	20	<u> </u>	620	5 95	
3 1 1	670	0.72	20	10.1	675	0.05	
	0.70	0 27	21	10.6	610	0.54	
5 26	695	0.68	22	1/9	11.00		
5 21	0.05	101	23	<u></u>	0		
7 7 [A95	126	24	7/1			
8 41	105	1.55	25				
	115	1.65	20				
Time / SG: 1327	15.40		Time	150	_		
10 Ci	G G G	1.20	29	:/ 30.		1	
11 66	1.45	107	20				
12 b /	1.05	1.01	20				
13 / (-	28	0.70	21				
13 6.9	D.C AIE	01	22	_			
15 27	1.07	6.17	22				
15 R I	0.50	DLT	35	_			
17 61	640	0.50	54	4. 14			
10 6 5	0.115	().17	35	4			
18 7 1 Time / SC:	0190	0.51	36	150			
nme / SG:			Lime	2/56:			
Flow (cts):	.26		Ente Date	red into Balling $2/16/19$	ger Creek Database? ————————————————————————————————————	AS	

BallingerCkStreamFlowDataSheet.xlsx

	Herrera -	Ballinger Creek	- St	ream Flow	Data Sheet	
Flow Station #: B	6-2	Gauge Start Height	:	5.55	Stream: Ballinger C	reek
Date: 2.15.	17	Start Time:	17	:35	Client: City of Shoreline	
Observer Initials:	A3/53	Gauge End Height:	2	5.50	Method: Wading	
		End Time:	17	24B		
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion fr	om actual disc	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	P	oor (10%*)	Sec.	
Flow Comments (e. LIESS 7	g turbulence arour URBID TH	ad gauge, lots of ma	iterial	in water, etc.)	:	
Cross Section Locat	ion:	KAZN.	0	F PED	BRIDGE	
Sketch of XS Locatio						
Control Feature/Co	ndition:					
Weather: 72	AIN, MO	nentre -	>	LICHT	*	
			•			-
Measurement Data		RB Distance (ft):	_		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Hor	izon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.5	Ø	Ø	19	9.5	0.5	0.92
2 1.0	0.5	0.71	20	10.0	0.3	0.20
3 1.5	0.8	0.98	21	10.5	0.2	0.0
4 2.0	1.0	0.77	22	11.0	0:25	0.0
5 2.5	1.0	1.09	23	11.5	\mathcal{O}	Ø
6 3.0	1.05	1.43	24		L.	1
7 3.5	1.05	1.79	25			
8 4.0	1.25	. 88	26			
9 4.5	1.2	2.02	27	ă		
Time / SG: 7	:40/ 5.55		Time	/ SG:		
10 .S.U	1.25	1.69	28			
11 5.5	1.2	1.17-	29		· · · · · · · ·	
12 6.0	1.0	0.73.	30	-		
13 . 6.5	0.9	0.55	31			
14 7.0	0.8	0.12	32			1.51
15 7.5	Gib	0.10	33			
16 8.0	0.45	0.36	34			-
17 85	0.5	0.63	35			
18 9.0	0.55	0.96	36		1 A 170	-8
Time / SG: \-	1:45 7 5	.53	Time	/ SG:		
Flow (cfs):	10		Ente	red into Balling	er Creek Database?	
8	.07		Date		Initials:	

BallingerCkStreamFlowDataSheet.xlsx

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: [36-3	Gauge Start Height	: 5.48	Stream: Ballinger C	reek
Date: 2.15	5.17	Start Time: (342	Client: City of Shore	line
Observer Initials:	AS	Gauge End Height:	5.54	Method: Wading / Culvert S	
		End Time: 13	,48		
Gauging Assessmer	nt: Circle One	*(within_% deviat	ion from actual discl	narge)	
Excellent (2%*)	Good (5%*)	(Fair (8%*)	Poor (10%*)		
Flow Comments (e.	.g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	-S OF BLAC	KZEDA
PLANTS + OT	HER VEG				
Cross Section Locat	tion:	8			
Sketch of XS Locatio	on:		1		
				2	
Control Feature/Co	ndition: CUEVA	MTS/LOTS OF	- VEL HUNG UP	IN LOWER CUL	VRAT
Weather: STEA	PY RAIN ;	MODRATE	YC HGAVY		
Notes (e.g. equipm	ent problems, flow l	blockages, unusual s	tream conditions, e	tc.):	
LOWER D	EPTH 1.25	FT UPPLER	DEPTH:	0.45FT	
CULVER	ELC 2.38	FPI CULVINE	1 VELC.	2.18 PS	
				(×.
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2			20		
3			21	•	
4			22		
5	18 H J		23		
6			24	0	
7	Ta		25	-	
8			26		
9			27		
Time / SG:			Time / SG:	-	
10			28		
11	<u>ي</u>		29		
12		-	30		
13			31		14 A
14			32		· · · · · · · · · · · · · · · · · · ·
15			33		
16			34		-
17			35	<u>s</u>	
18	1 L		36		
Time / SG:			Time / SG:		·
Flow (cfs):	25 211-	10 IT	Entered into Balling	ger Creek Database?	7
I.T.	WT 4.9-	7-6-2	Date: 2/16/1	? Initials:	to

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #:	BC-3	Gauge Start Height	: 5-54	Stream: Ballinger C	reek
Date: 2017-	02-15	Start Time:	7:58	Client: City of Shore	eline
Observer Initials:	AS, JB	Gauge End Height:	5-50	Method: Wading	Culvert
		End Time:	3:00]	\bigcirc
Gauging Assessmen	it: Circle One	*(within_%-deviat	ion from actual discl	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	:	
Cross Section Locati	ion:	<i>i</i> .			
Sketch of YS Locatio				· · · · · · · · · · · · · · · · · · ·	
SREEEN OF AS LOCALL	III. UPPECT		1		
	LOWOR IV.				
Control Feature/Co	ndition:				
Weather: STAPP	ED RAINIM	-MILD T	- and 's	•	
Notes (e.g. equipme	ent problems, flow I	olockages, unusual s	stream conditions. e	tc.):	
1/57	MPEDING F	20W Q.C	ULVERTE	NMANLES	
	PIALLED	ALTA LIDON	CHUMMT	ELICOLAL	/
VINES	Including	TOTO UPPE		2111-0311-04	
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2 LWR CUW.	1.85	2.26	20		
3			21		
4 aperta cutt			22		
5			23		
6		-	24		
7			25		
8			26		
9			27		
Time / SG: \7	58/5.50		Time / SG:		
10		,	28		
11 UPPER			29		
12 CULV.	0.75	173	30	[
13			31		
14			32	-	
15			33		
16			34	~	
17			35		
18			36		
Time / SG:			Time / SG:		
Flow (cfs):	a 1 : -	60	Entered into Balling	ver Creek Database?	4
6.	9+1.9=	- 8.0	Date: 2-116/15		AC

A

	Herrera - 1	Ballinger Creek	- Stream Flow	v Data Sheet		
Flow Station #: 🛯 🖁	C-4	Gauge Start Height	: 1.57	Stream: Ballinger C	reek	
Date: 2.15	17	Start Time: / L	107	Client: City of Shore	eline	
Observer Initials:	RS	Gauge End Height:	1.52	Method: Wading	Method: Wading Culvert	
		End Time:	431		-	
Gauging Assessmen	t: Circle One	*(within _% deviati	ion from actual d	scharge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial in water, et	c.):		
		-	_			
Cross Section Locat	ion:					
Sketch of XS Locatio	on:					
				24		
				1		
Control Feature/Co	ndition: GABION	wan the	TLAWS VEG	10K		
Weather: STGAL	>9 ILA(N					
Notes (e.g. equipme	ent problems, flow l	DIOCKAGES, UNUSUALS	stream conditions	, etc.):		
76 91.00	CELEC			/		
Measurement Data		RB Distance (ft):	0.30	LB Distance (ft):	7.0	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (t) Water Depth (ft)	Velocity (ft/sec)	
1 0.3	0	0	19 5.7	0.80	0.24	
2040	0.9	0.24	20 10.0	060	0.94	
3 1.9	1.2	069	21 (0.3	64	0.65	
4 2011.7	I.Y	104	22 10.6	0.3	0.87	
5 2415	1.5	1.12	23 7.0	62	0	
6 4R/8	135	1.11	24			
7 2971	125	120	25			
8 4.52.4	140	1243	26			
9 717 7	150	183	27			
Time / SG:	C-15/141	6	Time / SG:			
10 7 0	1155	1.76	78			
11 22	155	152	29			
12 21	100	1.51	30			
13 29	16	1.67	31			
14	53 (194	32			
15 40	1.5	12	33			
16 // 94	1.5	0.05	34			
17 <i>Γ</i>	12	05	35			
+/ 7.1 19 £1/	12	<i>A</i> 1 <i>a</i>	36			
Time / SG·	1.2	0.10	Time / SG			
Flam (afa)	aut	_	Enternal inter D-1	lineer Creek Database?	· · · · · · · · · · · · · · · · · · ·	
	.84		Data 2/15		Ar	
			Dare: P(10	initials:	14.2	

Class Station H. P.C.			· · · ·		
FIOW Station #: pc	-	Gauge Start Height	: 204 FT	Stream: Ballinger Creek	
Date: 3/17/17		Start Time:	39	Client: City of Shore	eline
Observer Initials: 🔺	7	Gauge End Height:	2.06 FT	Method: Wading	7 Culvert
		End Time: 114	3		
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disch	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.g	g. turbulence arour	nd gauge, lots of ma	iterial in water, etc.)		
LON, CLEA	e back p	LOW COND()	cent		
Cross Section Locati	on: CULVICE	3/010			1
Sketch of XS Locatio	n: SAME AS	PREVIOUS MAT	ING CURVE. MA	NUAL DISCH	t. Mersheen
Control Feature/Cor	Idition: CULVER	516000			
Weather: OV CLC	AST +MIL	o teres			8
Notes (e.g. equipme	int problems, flow b	plockages, unusual s	stream conditions, e	tc.):	
DEPTH O	.30FT				
VEC 1.	7.1 ERS				
1.	01113				
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2			20		
3			21		
4			22		
5			23		
6			24		
-		<u> </u>			
/			25		
2			25		
/ 8			25 26 27		
/ 8 9			25 26 27		
7 8 9 Fime / SG:			25 26 27 Nime / SG:		
/ 8 9 Fime / SG: 10			25 26 27 Tune / SG: 28		
7 8 9 Time / SG: 10 11			25 26 27 Turre / SG: 28 29		
7 8 9 Time / SG: 10 11 12			25 26 27 Time / SG: 28 29 30		
/ 3 9 10 11 12 13			25 26 27 Time / SG: 28 29 30 31		
7 8 9 Time / SG: 10 11 12 13 14			25 26 27 Time / SG: 28 29 30 31 32		
/ 8 8 9 Time / SG: 10 11 12 13 14 15			25 26 27 Nime / SG: 28 29 30 31 32 33		
/ 88 99 Time / SG: 100 11 12 13 14 15 16			25 26 27 Nume / SG: 28 29 30 31 32 33 33 34		
7 8 9 Time / SG: 10 11 12 13 14 15 16 17			25 26 27 Nime / SG: 28 29 30 31 32 33 34 35		
7 8 9 Time / SG: 10 11 12 13 14 15 16 17 18			25 26 27 Turne / SG: 28 29 30 31 32 33 34 35 36		

	Herrera - Ballinger Creek - Stream Flow Data Sheet						
Flow Station #: (3)	C-2	Gauge Start Height	: 5.03 Stream: Ballinger Creek				
Date: 3/17/1	7_	Start Time:	210	Client: City of Shoreline			
Observer Initials: 🤌	t s	Gauge End Height:	5.00	Method: Wading / Culvert			
	-	End Time: 17	25				
Gauging Assessmen	nt: Circle-One	*(within _% deviat	ion from actual disc	harge)			
Excellent (2%*)	(Good (5%*))	Fair (8%*)	Poor (10%*)				
Flow Comments (e. Low / CLEDE	g. turbulence aroun 2 BASCE	nd gauge, lots of ma LOW COND	iterial in water, etc.):			
Cross Section Locat	ion:						
Sketch of XS Locatio	on: Same As	PREVIOUS MC	NETCALING EL	, ENTS	920 ¹		
Control Feature/Co	ndition:						
Weather: OVER	COST W/M	ILD TEMP			15.		
			,	···· /·			
Measurement Data		RB Distance (ft):	. (LB Distance (ft): (C	5.3		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1 /. (Ø	600	19 83	0.2	9		
2 1.5	0.25	0.08	20 8.7	0.25	σ		
3 19	0.55	0.21	21 9.1	0.25	\mathcal{O}		
4 2.3	0.65	0.25	22 55	0.15	Ø		
5 27	0.75	0,18,	23 2,5	0:05	0		
6 3	0.75	D.23	24 /0.7	6	ð		
7 3.5	0.75	0.31	25				
8 3.9	0.70	0.26	26				
9 4.2	0.90	0.26	27				
Time / SG:			Time / SG:	- <u>-</u>			
10 4.7	0.75	0.24	28				
11 5 1	0.80	0.27	29				
12 55	0.80	0.33	30				
13 59	0.26	0.16	31				
14 6.3	0.65	30,0	32				
15 6.7	0.6	0.07	33				
16 7.	0.5	- 0	34				
17 7,5	0.35	-0.07	35				
18 7.9	0.3	0	36				
Time / SG:			Time / SG:				
Flow (cfs):	843		Entered into Ballin Date: 3 22	ger Creek Database?	YAS		

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: B	C-3	Gauge Start Height	: 4.30	Stream: Ballinger C	reek
Date: 3/17/1	7-	Start Time: 17	155	Client: City of Shore	eline
Observer Initials:	43	Gauge End Height:	4.70	Method: Wading	
		End Time:	300		
Gauging Assessment	:: Circle One	*(within _% deviati	ion from actual disc	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.g	turbulence arour	id gauge, lots of ma	terial in water, etc.)	au/clear R	HEFLOW
¥ REMOVED	CJEMENIGD	UENETATTA)	AD ONNO CULIVE	ATT	
Cross Section Location		o poci i i talo			
Sketch of XS Location	n:				
Control Feature/Con	dition: CULVER	TS MUCH IM	IPPOVAS AFTIR	REMOVING UEU	ACTATION IN CULL
Weather: MILD	TEMPS (~	50 OF). UL	HT RAIN BI	RUNNING	
Notes (e.g. equipme	nt problems, flow t	olockages, ynusual s	stream conditions, e	tc.):	
LOWRL DKS	5H: 1.10 FT	/ UPPE	a couvert	Dry/NO F	ion
CULVET VE	LC. O.SYF	PS /			
(Lawse CUL	VERT				
Measurement Data		RB Distance (ft):		LB Distance (ft):	1
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2	<u> </u>		20		
3			21		
4			22		
5	·	\searrow	23		
6			24		
7			25		
8			26 /	191	
9			27		
Time / SG:			Time / Se.		1
10			28		
11			29		K. D. D. Marso
12			30		
13			31		
14		/	32		
15		·····	33		
16			34		
17			35		
18			36		
Time / SG:		5. V	Time / SG:		
Flow (cfs):			Entered into Ballin	er Creek Database?	Y .
(1.16		Date: 3/22/1	T- Initials:	AC

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: BC-Y Gauge Start Heigh		: 0.70	Stream: Ballinger Creek			
Date: 3/17	117	Start Time: / 3	327	Client: City of Shoreline		
Observer Initials:	AR	Gauge End Height: G. 90		Method: Wading / Culvert		
End Time:			40			
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual discl	harge)	·	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. M. NIME	g. turbulence arour ていたうびしみいと	e AROVNO (iterial in water, etc.)	ick from le	ow + clean	
Cross Section Locat	ion: SAME AS	DREVIOUS	EVENTS			
Sketch of XS Location	on:			-		
Control Feature/Co	ndition:	-			.e	
Weather: LIGH	T PAIN W/	MILD TRA	185			
Lanovas n	ninger Knoc	INT OF STIC	CIES / DEBRI	5 ALCUND	CABE	
Measurement Data]	RB Distance (ft):	0.3	LB Distance (ft): 5.4		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1 0.3	Ø	ø	19			
206	1020	0.29	20			
3 0.9	0.30	0.45	21			
4 (-7	0.30	6.45	22			
5 1.5	0.35	0.65	23			
6 1.8	0.45	0.35	24			
7 7./	0.45	8.08	25			
8 7 4	6.45	-0 05	26			
9 7.7	6.45	0	27			
Time / SG:			Time / SG:			
10 2.0	0.45	-0.10	28			
11 33	050	-014	29			
12 36	0.55	\mathcal{O}	30			
13 79	0.60	0.44	31			
14 11.2	A 60	0.50	32			
15 105	6 60	780	33 4			
16 40	6.60	120	34			
17 El	0.00	117	35			
	().00 /1	đ	36			
10 <u>574</u> Time / SG		7	Time / SG			
Flow (cfo)			Entered into Delling	l I	0	
Flow (cfs): 0.95			Date: 3/22/17	Initials:	te	

d,

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: Br	-1	Gauge Start Height	it: 2.09 Stream: Ballinger Creek		reek
Date: 6/15/13	7	Start Time: 13	35	Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height:	2.09	Method: Wading	Culvert
		End Time:	540	1	
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual discl	narge)	,
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. - RECATIVIC	g. turbulence aroun	nd gauge, lots of ma . KAR FLCN	terial in water, etc.)	S	
Cross Section Locat	ion:				
Sketch of XS Locatio	on:				
Control Feature/Co	ndition: CUCVIL	MAC OIL			
Weather: LIGU	T PAIN W	MILD TE	MP-5	4 - N	
Notes (e.g. equipm	ent problems, flow l	Diockages, unusual s	stream conditions, e	tc.):	
MANUAC 1-	iscontact 1		- DICI I H	0.7347	
			VELOCIO	Y. 1 46 FPS	
Measurement Data		RB Distance (ft):	IB Distance (ft):		
Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19	The separate	
2			20		
2			21		
Л			22		
5	\vdash		22		
5			23		
o			24		
/	· · ·		25		
ð			20		
9					
lime / SG:			Time / SG:		
10		<u> </u>	28		
11			29		
12	/	ſ	30		
13			31		
14			32		
15	/		33		
16			34		
17			35		
18			36		
Time / SG:			Time / SG:		
Flow (cfs): 0.47			Entered into Balling Date: んしてして	ger Creek Database? Initials:	Y AR

r

	Herrera - I	Ballinger Creek	- Stream Flow [Data Sheet		
Flow Station #: 🛛 🖗	2 - 1	Gauge Start Height	: 2.05	Stream: Ballinger C	reek	
Date: 6/15	117	Start Time: / S	34	Client: City of Shor	eline	
Observer Initials:	AS	Gauge End Height:	2.05	Method: Wading	Culvert)	
		End Time: 15	35			
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual disch	harge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. - FLOWS LO - STILUM V	g. turbulence arour WAL, CLK NACL BURAL	AC CN SAND	terial in water, etc.)	SAND WHEN	ACCESSIM	
Cross Section Locat	ion:					
Sketch of XS Locatio	on:					
Control Feature/Co	ndition: CULUR	Mas/OK				
Weather: SPo 77	Y LIGHT P.	MIN, OVERCA	57			
Notes (e.g. equipmo	VEPTH: 0.27 VRLC: 0.83	FT FF FPS	DATA Dew	NL-AD CO	mplest	
Measurement Data	1	RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1		Б.	19			
2		, 1	20			
3			21			
4			22			
5	é A		23			
6			24			
7			25			
8			26			
9			27		5	
Time / SG:			Time / SG:			
10			28	,		
11			29			
12			30			
13			31			
14			32			
15			33			
16			34			
17			35			
18			36			
Time / SG:			Time / SG:			
Flow (cfs):	0 211		Entered into Balling	er Creek Database?	4	
(cis). 0.24			Date: 6/19/17 Initials: AS			

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #:	c-2	Gauge Start Height	: 5.13	Stream: Ballinger C	reek
Date: 6/15/1	7	Start Time: 13	5E	Client: City of Shoreline	
Observer Initials: <	AS	Gauge End Height:	5.15	Method: Wading	Culvert
	P	End Time: 14	25	- 187	
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual discl	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. - Flans sc ov Re-Ghewn	g. turbulence around 164727 FL +SUBMEN	EVATED INCLE	TURBID, 10 FURBID, 10 ELC ALENG	TS of VRGE BETH BEND	CARON KS
Cross Section Locat	ion: UPSTRA	NOF PROJEST	RIAN BRIDG	E	
Sketch of XS Locatio	on: MA				5. J
Control Feature/Co	ndition: LB+RE	5 /OVERLERON	NN VEG MAY	IMPANT GROGE	LEVELS DURIN
Weather: OST CAL	J- RAWTM	ILD TEMP	Ś		HIGH FLOW EN
Notes (e.g. equipm	ent problems, flow I	blockages, unusual s	stream conditions, e	tc.):	N. Contraction
-SER FLO	~ comma	nots ABOU			
Measurement Data		RB Distance (ft):	0.8	LB Distance (ft):	3.8
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.2	0	0	19 8.0	0.10	0.06
2 1.2	012	- 0.2h	20 8.4	0.05	0
3 1.6	1.70	0.31	21 8.8	0.05	<u>_</u>
4 2.0	D.40	0.58	22 9 t	C	Ó
5 2.4	0.55	0,54	23		
6 2.8	0.55	0.55	24		
7 3.7	0.55	0.59	25		
8 31	0.105	054	26		
9 4 0	070	OHE	27	4	
Time / SG: /4/)	1513		Time / SG:		
$10 u \vee$	070	056	28		
11 46	DIT	159	29		
12 5 2	070	().10	30	-	
13 5/	070	157	31		
14 60	062	0391	32		
15 / V	33.0	au	33		
15 / 0	0.4E	0.1T 1/34	34		
17 0 D	0.13	0.1	25		
10 21	0.2	0.0	26		
$\frac{10}{100} \frac{1}{100} 1$		0.42	Joo		
Flow (cfs):	73		Entered into Balling Date: 6/19/17	I ger Creek Database? Initials:	Ar

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: 🕏	C-2	Gauge Start Height	: 4.95	Stream: Ballinger Creek		
Date: 6/15	117	Start Time:	1605	Client: City of Shoreline		
Observer Initials:	AS	Gauge End Height:	4.94	Method: Wading	Culvert	
		End Time: 16	17-	17 - 8080		
Gauging Assessmer	nt: Circle-One	*(within _% deviat	ion from actual discl	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. ccraft, AF	g. turbulence around 20 March 19	nd gauge, lots of ma BASEFLOU	terial in water, etc.) $\sim co ND(-72)$	-~S		
Cross Section Locat	ion:					
Sketch of XS Location	on:		2(C		- 10 C	
			A. 23			
	100					
Control Feature/Co	ndition: LB+RB	5/016				
Weather: PEAle	DIC LIGHT	- RAIN SHA	NERS, MUCE	STrap's	2	
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	stream conditions, e	tc.):		
DATA Da	NNLEAD PI	ERFERNED				
			and the second sec	- 18 - 19 ¹		
Measurement Data		RB Distance (ft):	1.0	LB Distance (ft):	8.3	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1 /.0	0	G	19 8.25	.0		
2 (.9	0.10	\mathcal{O}	20			
3 1.8	0.40	0.13	21		•	
4 2.2	0.45	0,22	22			
5 2.6	0.50	V. 2C	23			
6 3.0	0.60	0,24	24			
7 3.4	0.60	0.24	25	· · · ·		
8 3.8	0.10	0.23	26			
9 4.2	0.60	0.(8	27			
Time / SG:			Time / SG:			
$10 Y \cdot (2)$	0.55	0.17	28			
11 5.0	0.(00	0. 6	29			
12 J.Y	0.(_0	0.14	30			
13 5.8	0.55	0.15	31	3		
14 / 7	0.45	0.(2	32		- 8	
15 6 6	0.35	0.10	33			
16 70	0.25	-70.6	34			
17 74	0.15	20.0	35			
$\frac{18}{18}$ $\frac{7}{9}$	0.05	0	36			
Time / SG:			Time / SG·			
Flow (cfc):			Cotorod into Dalling	l tor Crook Database?	4	
riow (cts):	500			ger Creek Databaser	AP	
				7 Initials:		

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: B	C-3	Gauge Start Height	: 4.86	Stream: Ballinger C	reek
Date: 6/15/	17	Start Time: 14	42	Client: City of Shoreline	
Observer Initials:	AC	Gauge End Height:	4.86	Method: Wading / Culvert	
		End Time: 14	45		
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual discl	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	id gauge, lots of ma	terial in water, etc.)	IMAL TORS	VERE
ADOWNS CAR	E, MINIMAL	ANT'S OF .	166. COULS	TIN COWIEL	CUVINS
Cross Section Locat	ion: SAME AS	PARVIEDS 1	MERCUREME	NTT	
Sketch of XS Locatio	on: ~ ~ ~	1			
		•			
Control Feature/Co	ndition: CULVR	MS/OK			
Weather: OVGCC	AST. PANS	STEPPED			
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	tream conditions, e	tc.):	
contr cut	VENT DEPTH	- 1.20	VP PKL CUI	vert Depet	4:0.20
	VELALT	7.0.69		VELOCI	1:0.25
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2	\searrow		20		
3			21	-	
4			22		
5			23		
6			24		
7			25		
8			26		
9			27	- · · ·	
Time / SG:			Time SG:		
10			28		
11			29		
12			30		
13			31		
14			32		3
15			33		
16			34		
17			35		
18			36		
Time / SG:	<u> </u>		Time / SG:		
Flow (cfs): / 30	4+0.04 =1	40	Entered into Balling	er Creek Database?	Ч
			Date: 6/19(17	Initials:	AC

	Herrera - I	Ballinger Creek	- Stream Flow [Data Sheet		
Flow Station #: B	C-ン	Gauge Start Height	: 463	Stream: Ballinger C	reek	
Date: 6/15	-117-	Start Time: 165	3	Client: City of Shore	eline	
Observer Initials: 🏌	ts	Gauge End Height:	4.63	Method: Wading Culvert		
		End Time: 17-0	-02			
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual discl	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. Low FLow IT	g. turbulence arour SAS \in E C e W	d gauge, lots of ma Ceへの」 Tこeへ	terial in water, etc.)			
Cross Section Locat	ion: NA					
Sketch of XS Locatio	on: NA-					
	9					
Control Feature/Co	ndition:					
Weather: Ovenc	AST W/ VRA	1 -16AT RA	2N		E.	
Notes (e.g. equipme	ent problems, flow b	blockages, unusual s	tream conditions, e	tc.):	a	
FEWALOR	a here !	O Got	- TPC-> I	INGOT IN GOOD		
LOWER CULVE	VELOCITY	7 39 SIC	UPPIAL CO	LV GPT ; Ne r	~~~	
		RB Distance (ft)		LB Distance (ft):		
Horizon Dist (ft)	Water Denth (ft)	Velocity (ft/sec)	Horizon Dist (ft)	Water Denth (ft)	Velocity (ft/sec)	
1			19			
			20			
2			20			
1			22	<u></u>		
ч с			73			
с с			23			
7			24			
/			25			
o			20			
9			Z I C C	I		
lime / SG:						
10			20			
11			29			
12			30			
13			31			
14			32			
15			33		<u> </u>	
16		0)	34			
17			35			
18			36			
Tioné / SG:			Time / SG:		<u> </u>	
Flow (cfs): 0	.6 (Entered into Balling Date: 6 19 17	ger Creek Database? Initials:	As	
	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
------------------------------	----------------------	-----------------------	------------------------	---------------------------	-------------------	--
Flow Station #: 💦	5c-4	Gauge Start Height	: 0.63	Stream: Ballinger Creek		
Date: 6/15/1	17-	Start Time:	540	Client: City of-Shoreline		
Observer Initials:	TS.	Gauge End Height:	9.63	Method: Wading Culvert		
		End Time: 155	21			
Gauging Assessmer	nt: Circle One	*(within _% deviation	ion from actual disc	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. MINIMAL	.g. turbulence arour	E AANNO G	terial in water, etc.)	:		
Cross Section Locat	tion: SAME AS	PREVIOUS ME	NUREMENTS			
Sketch of XS Locati	on:					
	•					
Control Feature/Co	ondition: GABLON	WATE OIL	<u></u>			
Weather: CIGH	TRAIN M	LD Jan		to 1.		
Notes (e.g. equipm	ent problems, flow I	DIOCKages, unusual s	stream conditions, e	LUT DID NO	JT. APPEAR	
TO EFFECT	- WATCH L	ENGLS				
	00.00					
Measurement Data	3	RB Distance (ft):	0.8	LB Distance (ft): 5.6		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1 0.8	0	0	19			
2 1 1	0.15	0.2(20			
3 (4	0.15	7-20	21			
4 1.7	ð	ð	22		- / -	
5			23		- / -	
6 7.9	ð	Ð	24			
7 3	0.0	0.44	25			
8 34	0-15	0.02	26			
9 37	0.25	160	27			
Time / SG:			Time / SG:			
10 40	0.25	1.25	28			
11 43	0.25	1.15	29			
12 46	0.20	20.05	30			
13 ¥ 9	0.10	p.db	31		1	
14 5.2	0.0	6.05	32		- 7 -	
15 5.5	010	0.10	33		E 1-0	
16 5 6	0	0	34		1	
17	<u> </u>		35		6	
18			36		8	
Time / SG:	l		Time / SG:			
Flow (cfs):	1.39		Entered into Ballin	ger Creek Database?	4	
	- •		Date: 6/19/1	+ Initials:	AC	

	Herrera -	Ballinger Creek	- Stream Flow [Data Sheet	
Flow Station #: 73	12-4	Gauge Start Height	: 6.78	Stream: Ballinger C	reek
Date: 6/15	-117-	Start Time: 13	FAO	Client: City of Sh <u>orel</u> ine	
Observer Initials: <	15	Gauge End Height:	0.76	Method: Wading	-Culvert
		End Time: 1	F19]	
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual discl	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)	ht.	
Flow Comments (e. - Mang Sc	g. turbulence arour	d gauge, lots of ma	terial in water, e <u>tc.)</u> SCI (SHIC)	TURPIS	
Cross Section Locat	ion: ~ 10 FER	T UPSTREAM	OF NORMA	LOCATION -	E.
Sketch of XS Locatio	on:	2		- F	
Control Feature/Co	ndition: GABLO	J WALL /OK			1. I.
Weather: OV Cha	AST, PARN	STILL VRM	116STr/No	RAIN	0
Notes (e.g. equipm	ent problems, flow b	olockages, unusual s	tream conditions, e	tc.):	
DONNLOADE	A DATA FRU	ON DATA 6	OGGRE		
BATTCH	1: 4 % (USED)			
Manen	: 311- (US	RD)			
Measurement Data		RB Distance (ft): (2.4	LB Distance (ft):	5.4
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.4	0	0	19		
2 0.7	0.25	0	20		
3 (.0	0.35	0.04	21	_	
4 1 3	().35	0.06	22		- 1
5	0.40	0.33	23		
6 1.9	0.45	0.39	24		
7 2.2	0.45	0.40	25	5	
8 2.5	0.40	0.96	26		
9 7.8	0.30	1392	27		
Time / SG:		10	Time / SG:		
10 3 (0:30	1.51	28		
11 24	0.25	1.70	29		
12 2 7	0.25	174	30		
13 U.O	A.2.<	171	31		
14 UZ	0.20	21L	37		
15 U(.	0.20	2,19	33		
16 J/ G	0.20	190	34		
$\frac{10}{17}$ $\frac{4.7}{5}$	(.25	1.10	25		
11 52	U. 2)	0_52	20		
			36		
lime / SG: 14/	1 0.76		Time / SG:		
Flow (cfs): 1.424			Entered into Balling	ger Creek Database?	7
	4 4		Date: 6[19][-	f Initials:	AS

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: E	36-1	Gauge Start Height	: 183	Stream: Ballinger Creek		
Date: 8/3	117	Start Time: 12	35	Client: City of Shoreline		
Observer Initials:	15	Gauge End Height:	1.83	Method: Wading / Culvert		
		End Time: 1240				
Gauging Assessmer	nt: Circle One	*(within _% deviati	ion from actual discl	narge)	9	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma ~ しんアレー	terial in water, etc.) しいて			
Cross Section Locat	ion: CULVENT	- (OVTLET)	10			
Sketch of XS Locatio	on: Dice Tt	1:0.06 FT	- / VECOC	57.0.74	FPS	
Control Feature/Co	ndition: CULVIS	7/01-				
Weather: MoSt	rly sunn-	1+warm				
-REMOURD B - DONNLOA	ent problems, flow b LACKACRACE DED DATA	FT LOCKE	itream conditions, e INTO B(ND -OMPLE-76	GAGE, Ura	NCD GAUGE	
Measurement Data		RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1			19			
2			20			
3		Ar manan 11 a	21			
4			22		1	
5			23			
6			24			
7			25			
8			26			
9			27			
Time / SG:			Time / SG:			
10			28			
11			29			
12		· · · · · · · · · · · · · · · · · · ·	30			
13			31		= =	
14			32			
15			33			
16			34			
17	陸		35			
18			36			
Time / SG:			Time / SG:			
Flow (cfs): 🔿	22		Entered into Balling	er Creek Database?	4	
	C		Date: 9/6/17 Initials: AS			

		Herrera -	Ballinger Creek	- St	ream Flow I	Data Sheet	
Flow Station	1#: Ē	30-2	Gauge Start Height	t: 4	1.96	Stream: Ballinger C	reek
Date: 🔗	131	117	Start Time: 13	522		Client: City of Shore	eline
Observer Ini	tials: 🚽	45	Gauge End Height:	4.	Elo	Method Wading Culvert	
			End Time: 133	B			
Gauging Ass	essmer	nt: Circle One	*(within _% deviat	ion fr	om actual discl	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	F	Poor (10%*)		
Viry Lo	ents (e. ん, と	e. turbulence aroun	ad gauge, lots of ma		an water, etc.)	: 	
Cross Section	n Locat	ion: JUST VES	TREAM of	RP	-IDGR		
Sketch of XS	Locatio	on: SANCE AS	PREVICUS 1	NE	ASCREM	ENTS	
Control Feat	ure/Co	ndition: STR-Ba	MBANKES/C	٢			
weather: /	vost	C JUNNA	+ materia				
Notes (e.g. e	quipmi	ent problems, flow I	Diockages, unusual s	stream	n conditions, e		
- DOWA	161	TDEL DAI	A - LOCICS	OK	7		
Measuremer	nt Data		RB Distance (ft):	1.5		LB Distance (ft):	1.0
Horizon. Dis	st. (ft)	Water Depth (ft)	Velocity (ft/sec)	Hor	izon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 1.0		0	0	19	64	0.2	0
2 / 3		02	ð	20	L.I	01	C
3 /.(0		0-15	0.[6	21	20	0	0
4 1.9		0.10	0.06	22			
57.ì	-	0.40	0.06	23			
6 2.4		0.50	6 -C/a	24			
7 7 8	,	0.45	0.06	25			
8 Z I	(050	0.06	26			
9 7,4	\overline{c}	0.0	6.06	27			
Time / SG:	132	26/4.96		Time	e / SG:		
10 7 -		0.45	0.06	28			
11 U.C	; _	A.50	0.04	29			
12 4-	5	6 40	1.04	30			
13 U.		0.45	0.01	31			
14 U.	5	0.50	0.07	32		· · · · · · · · · · · · · · · · · · ·	
15 5	7	0.45	6.03	33			
16 C	5	0.40	0.01	34			
<u></u> 17 ۲	8	1.32	0	35		······································	
18 ($\frac{1}{1}$	020	0.07	36	10		
<u> 6.</u> Time / SG·	123	2/46/		Time	/ SG·		
Flow (cfe)	<u>~</u> /	20		Enter	red into Polling	ar Creek Databara	Ч
i iow (cis).	0.0	17		Date		7- Initials:	AC

200

Herrera - Ballinger Creek - Stream Flow Data Sheet							
Flow Station #:	20-3	Gauge Start Height	4.41	Stream: Ballinger C	reek		
Date: &/3	117	Start Time: 19	03	Client: City of Shoreline			
Observer Initials:	45	Gauge End Height:	4.41	Method: Wading <	I_culvert		
		End Time: 14	1405				
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual discl	harge)			
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)				
Flow Comments (e.	g. turbulence arour BRSEECon	nd gauge, lots of ma	iterial in water, etc.)	:			
Cross Section Locat	ion: CUWGo	T					
Sketch of XS Locatio		CULVERT	= EGFTG+: 0	ATET /VIC	CC: O. OSFA		
	UPPER	-CULVIDIT	: DPm				
Control Feature/Co	ndition: CUVG	ms/qc					
Weather: SUN	M + what	\sim	•				
Notes (e.g. equipme DATA Device - CLEANING	ent problems, flow I NLCAD OK- > CAUGE	DATASET	Stream conditions, e COMPLETI PLACEMEN	tc.): C			
Measurement Data		RB Distance (ft)		I B Distance (ft)			
Horizon Dist (ft)	Water Denth (ft)	Velocity (ft/sec)	Horizon Dist (ft)	Water Denth (ft)	Velocity (ft/sec)		
1	Water Deptifitio	velocity (10/300)	10	water Depth (it)	velocity (trysee)		
2			20				
2			20				
2 A			21				
ч С			22				
5			23				
7			24				
0			25				
0			20				
J Time / SC:			2/ Time / 5C:				
10			nme / 56:				
10			20				
11			29				
12			21				
14			22				
15	· · · · · · · · · · · · · · · · · · ·		22				
15			24		·		
10			24 25				
1/		_	35				
			50 Time / SC:				
			nme / SG:		~		
	22		Entered into Balling Date: 9617	er Creek Database? Initials:	ÅR		

Herrera - Ballinger Creek - Stream Flow Data Sheet					
Flow Station #: BC	2-4	Gauge Start Height	: 0,52	Stream: Ballinger C	reek
Date: 8/311	17	Start Time: (^C	138	Client: City of Shore	eline
Observer Initials:	3	Gauge End Height:	0.52	Method: Wading) Culvert
		End Time: 1	147-		
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disch	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e. VERM LOW	g. turbulence arour	nd gauge, lots of ma PASEPCO	terial in water, etc.) $\sim CoNO17$	rens	4-i,-i
Cross Section Locat	ion: $\sim 10 FE$	ET JPSTRE	AM OF USU	AL LOCATLO	2
Sketch of XS Locatio	חכ:				
Control Feature/Co	ndition: STREAM	1 BANICS / 01	4		
Weather: SUNN	M+WARN	\sim			
Notes (e.g. equipme - DATA D - CLENCE	ent problems, flow to OWNLOAD OCAUGE,	Diockages, unusuals COMPLES REMOVED	SWD ARON ACT	tc.): VO CAGE O LOW FLOI	15
Massurement Data	S COLECC ISA	RB Distance (ft):	<u> </u>	I B Distance (ft):	1.1
Horizon Dist (ft)	Water Depth (ft)	Nolocity (ft/sec)	U. \	Water Depth (ft)	Velocity (ft/sec)
		velocity (it/sec)	10	water Deptir (it)	
$\frac{1}{2}$ 0 14		6.27	20		
2 0 1	0.1	1.18	20		
3 (). T	0.1	1.10	21		· · · · · · · · · · · · · · · · · · ·
4 1-0 5 1 1	03	0.7	22		
5 [] [J.		23		
b			24		
/			25		
8			26		
9			27		
Time / SG:	·		Time / SG:		<u> </u>
10	8		28		
11		-	29		
12			30		
13			31		
14		N 4	32		
15			33		
16	h 3		34		
17 35					
18			36		
Time / SG:					
Flow (cfs):	1(Entered into Balling Date: 9/6/1	ger Creek Database? 7 Initials:	K

Herrera - Ballinger Creek - Stream Flow Data Sheet							
Flow Station #:	C-1	Gauge Start Height	: 2.62	Stream: Ballinger Creek			
Date: 11/21/1	ł	Start Time:	2	Client: City of Shoreline			
Observer Initials:	4S	Gauge End Height:	2.62	Method: Wading ((Culvert		
		End Time: // /8	,				
Gauging Assessmer	nt: Circle One	*(within _% deviati	on from actual disch	harge)			
Excellent (2%*)	Good (5%*)		Poor (10%*)				
Flow Comments (e. - H16H FCan	g. turbulence arour	E, + TURBIN	terial in water, etc.) しててつ				
Cross Section Locat	ion: SAME PS	PREVIOUS M	EASINENEN	5			
Sketch of XS Locatio	on:						
Control Feature/Co	ndition: CULVER	TS BIRD CA	GE-OK				
Weather: STIC	LOT DAIN, Y	5°P					
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	tream conditions, e	tc.):			
-CULVER-	TOUTLET:	DEPTH: O VELC: 3	.95 FT .63 FPS				
Measurement Data		RB Distance (ft):		LB Distance (ft):			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1			19				
2			20				
3			21				
4			22				
5	- The		23				
6		•	24				
7			25				
8			26				
9			27				
Time / SG:		<u> </u>	Time / SG:	<u></u>	· · · · ·		
10			28				
11			29				
12			30				
13			31				
14			32				
15		·	33				
16	·		34				
17			35				
18			36				
Time / SG	l		Time / SG·				
Flow (cfc)	~ /		Entered into Balling	I			
- (0-	$\mathcal{L}($			Initials:	ts		

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: 13C - 2 Gauge Start Height:			: 5.53	Stream: Ballinger C	reek
Date: 11/211	7	Start Time: // 3	0	Client: City of Shoreline	
Observer Initials: A Gauge End Height:			5.57	Method: Wading	/ Culvert
	P.	End Time: (15)			
Gauging Assessmer	t: Circle.One	*(within _% deviation	ion from actual discl	narge)	
Excellent (2%*)	(Good (5%*))	Fair (8%*)	Poor (10%*)		
Flow Comments (e. — MINIMAN	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	:5	
Cross Section Locat	ion: SAME A	5 PREVICUS	15		
Sketch of XS Locatio	on:	c		i i	
Control Feature/Co	ndition: STRAA	~ BANKS/BI	LIDGE - 91	2	1.1
Weather: STRA	NJAA MA				×
Notes (e.g. equipme	ent problems, flow I	olockages, unusual s	stream conditions, e	tc.):	
		i		ė.	
Measurement Data	5	RB Distance (ft):	1.3	LB Distance (ft): /	4.5
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 1.3	0	0	19 13.2	0.15	0
2 7.0	0.so	1.29	20 14.5	0	\sim
3 7.7	0.70	1.06	21	4	
4 3.4	0.80	1.31	22		
5 4.1	0.90	1.51	23		
6 4.8	0.95	1.64	24		
7 5.5	0.95	1.92	25		
8 62	0.95	213	26		
9 (0.9	080	1.71	27	2	
Time / SG: 1142	15.55		Time / SG:	*	
10 7.10	670	11.14	28		
11 8.3	1.50	0.80	29		
12 9.0	0.40	0.81	30		
13 9.7	0.30	0.79	31	, =	
14 10.4	025	0.65	32		
15 /[.[0.30	0.58	33		
16 11.8	0.30	0.22	34	L	
17 12.5	0.30	024	35	10 m	
18 122	020	0.05	36		
Time/SG: //うっ	15.57		Time / SG:		
Flow (cfs):	84		Entered into Balling Date: $11/22/($	ger Creek Database? 7- Initials:	15

Herrera - Ballinger Creek - Stream Flow Data Sheet							
Flow Station #: 戊	2-3	Gauge Start Height	: 5.75	Stream: Ballinger C	reek		
Date: 11/21/1	7	Start Time: 12	10	Client: City of Shoreline			
Observer Initials:	15	Gauge End Height:	5.78	Method: Wading	Culvert		
		End Time: ノン	E				
Gauging Assessmen	t: Circle One	*(within _% deviati	on from actual disch	arge)			
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)	8			
Flow Comments (e., - LOTS CF	g. turbulence arour	id gauge, lots of ma CE Arcon	terial in water, etc.): D GAOR				
Cross Section Locat	ion:	R	201		- 5		
Sketch of XS Locatio	on:	$\omega = -\omega$					
VILLET	ATION PAR-	TALLY BLA	cicial Bot	TH CULVELO	45		
Control Feature/Co	ndition:	100					
Weather:							
Notes (e.g. equipme	ent problems, flow b	olockages, unusual s	tream conditions, e	tc.):			
- LOWRA C	ULVERT: DO	ATH Z.CC FT	VIPER CUL	VERT DEDTI	1 0.70		
*	V	ice 1.58 FA	'S ``	Viela	2.54		
Measurement Data	î.	RB Distance (ft):	A	LB Distance (ft):			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1			19				
2			20				
3			21				
4			22	0	a)		
5			23		-		
6			24		13		
7			25				
8			26				
9			27 -	میں د ا	4		
Time / SG:	·		Time / SG:		8.7		
10			28 🔊	·	· ·		
11		<i>a</i>	29 -		·		
12			30				
13			31		-		
14			32				
15			33	-			
16			34	-			
17	·		35				
18			36		6		
Time / SG	<u> </u>	L	Time / SG:		3		
Flow (cfs): 4.96	+2.49=7	45	Entered into Balling Date: 11 28/17	ger Creek Database? Initials:	45		

0

	nerrera - I	banniger Creek	- Suedin Flow L		
Flow Station #: Bo	2-4	Gauge Start Height: 1.66 S		Stream: Ballinger Creek	
Date: 11/21/17		Start Time: 230 C		Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height:	1.64	Method: Wading	ho Culvert
End Time: 2			6		
Gauging Assessmen Excellent (2%*)	t: Circle One Good (5%*)	*(within _% deviat Fair (8%*)	ion from actual disch Poor (10%*)	arge)	
Flow Comments (e.)	g. turbulence arour	e Azan	iterial in water, etc.): o cacia		
Cross Section Locat	ion: SAME AS	PREVIOUS,	MERSURE	NJG	
Sketch of XS Locatio	on: U	01			
	72				
(1	
Control Feature/Co	ndition: STR-E	An BANK	10ABEN W	IALL OK	
Weather: STE	ADY RAIN				
Notes (e.g. equipme	ent problems, flow l	olockages, unusual	stream conditions, e	tc.):	
			A		
Measurement Data):	RB Distance (ft):	0.4	LB Distance (ft): /8.3	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.4	0	0	19 / Ø	0.20	0.0
2 89	1.40	0.35	20 12	0.10	C
a [4	140	027	21 / 3	0.30	0.03
19	150	108	22 14	G 25	007
4 1-1 r 7 U	1.10	120	22 15	0.20	0.06
	1.40		23)	0.75	<u> </u>
b 1.9	1. 7.2	1.42	24 [6	0.23	0.01
7 3 9	1-40) ()	25 17	0,0	
8 3.7	30	1.45	26 / 2	0.05	
9 4:4	1.38	1. 80	27 / 6.3	0	
Time / SG:	· · · · · · · · · · · · · · · · · · ·		Time / SG:		
10 4.9	1.4G	2.18	28	== = -	
11 公乐	1.45	1.36	29		
12 59	1.50	0.25	30		· · · · · · · · · · · · · · · · · · ·
13 6 4	0.70	0.06	31		
14 69	0.65	1.30	32		
15 74	ACC	(7.83	33		
16 <u>7</u> G	0 VE	032	34		
10 -+ -7	0.40	10.0	25		
11 8.9	().10	0.25	155		
18 7.7	0.55	0.04	136		
Time / SG: 1249	1/1.64		Time / SG:		L
Flow (cfs):	\dot{n}		Entered into Ballin	ger Creek Database?	
[0.0]			Date: (1 28/1-	Initials:	AS

T)	Herrera - I	Ballinger Creek	- Stream Flow [Jata Sheet	
Flow Station #: B	c-1	Gauge Start Height	: 2.62	Stream: Ballinger Creek	
Date: 12/19/1	7	Start Time: 02	20	Client: City of Shoreline	
Observer Initials: 🖇	Gauge End Height:		2.20	Method: Wading	Culvert
		End Time: 08	323		
Gauging Assessmen	it: Circle One	*(within _% deviati	ion from actual disc	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	d gauge, lots of ma	terial in water, etc.)	IN DEPASIT	TN
- LOTS OF	10 USULENCI	E ALLENIJ (sack wish		
	SROE, IVIC	SID FLOW			
Cross Section Locat	ion: BILD LAG	CICULVERT	OVILLE		
Sketch of XS Locatio	on:			245	
				<u> </u>	
Control Feature/Co	ndition: BIRDCA	UE/CIE			
Weather: Sile	DY MAINI CO	CL TEMPS	the second second second second second second second second second second second second second second second s	ta 1.	
Notes (e.g. equipm	ent problems, flow b	DIOCKAges, UNUSUALS	stream conditions, e	IC.J:	
CULVER D	1CPTH = 1.05	PT .			
V	eloc UTY: L	1.17 FPS			
Measurement Data	1	RB Distance (ft)		B Distance (ft):	
Horizon Dist (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1	trater beparting	teresty (restor)	19		
±		·	20	· · · · · · · · · · · · · · · · · · ·	
2			20		
D			22		
4	· · · · · · · · · · · · · · · · · · ·		22		· · · · · · · · · · · · · · · · · · ·
5			23		
6			24		
7			25		
8			26		·
9			27		
Time / SG:			Time / SG:		
10 .			28		
11			29		
12			30		
13			31		
14			32	-	
15			33		
16			34		
17			35		
18		·	36		10 C
Time / SG:		L	Time / SG:		
Flow (cfs):			Entered into Balling	er Creek Database?	/
	.10			7 Interala	A

	Herrera -	Ballinger Creek	- Stream Flow	Data Sheet		
Flow Station #: 13C-2 Gauge Start Height:			: 5.70	Stream: Ballinger Creek		
Date: 12/12/	17-	Start Time: 🔿	333	Client: City of Shoreline		
Observer Initials: AS Gauge End Heig		Gauge End Height:	5.69	Method: Wading	/ Culvert	
End Time: 090			20			
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disc	harge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
$= M \circ D \& M \to D \\$	g. turbulence arour	LE ARONN	D GAGE, TO	IRBID FLOU	J	
Cross Section Locat	ion: ~ 6" VPS	TREAMOF	BRIDGE			
Sketch of XS Locatio	on:					
а С					8	
Control Feature/Co	ndition: STR-RA	MBANICS /	ok			
Weather: STEA	DY MAIN	1				
Notes (e.g. equipm	ent problems, flow I	olockages, unusual s	stream conditions, e	etc.):		
	,					
Moacuromont Data	10	RB Distance (ft):	1.0	LB Distance (ft):	14.G	
Horizon Dist (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
	Q	Velocity (it/see/	19 10	0.20	1.70	
$\frac{1}{2}$	au	677	20 185	0.25	1.21	
3 7	0.9	1 2.4	21 /(635	1.05	
4 7.6	175	1.50	22 115	0.35	0 80	
5 2	a to	6.26	23 12	0.35	0.62	
5 25	1 00	174	24 11-5	0.10	0.41	
7.)	1 00	168	25 17	0.30	95.0	
8 UE	100	180	25 125	015	0.74	
0	1.05	195	27 1V	0	C	
Time/SG: 08	411520	1,13	Time / SG			
10 55	100	234	28			
10 5.5	1.05	257	29			
12 / -	1.05	2.42	30			
13 1	Aer	1.95	31	1.1.1		
14 7.5	0.00 0.7t	154	32			
15 G	0.10	1.07	33			
15 85	0.00	0.04	34			
17 6	0.52	6 76	25			
10 95	610	101	26			
10 7.5 Time / 50: 69:0	10.40	1,01	Time / SC:			
	413.67		Fatancillus D. III	l .		
Flow (cfs):	2.16	3	Entered into Ballin	ger Creek Database	AP	
N=11			Date: 16 61	Initials:	7\>	

	Herrera -	Ballinger Creek	- Stream Flow [Data Sheet	
Flow Station #: BC	2-3	Gauge Start Height	5098	Stream: Ballinger Creek	
Date: 12/19/1	7	Start Time: 0912		Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height:	5.99	Method: Wading	Culvert
	0	End Time:	SITTO		
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disch	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence arour	d gauge, lots of ma	terial in water, etc.)	AZSGRVO	D CULENCE
FLOW THAN	BC-2/BC-	L'S BOG (SN 3, REMOVIES M	ALL CREEKE	ENTERINE R	ACL CIC
Cross Section Locat	ion:				
Sketch of XS Locatio	on:		- I DYALALA	ICE ED DICO	LARGE
* CHECKED	CB NGARIST	ALGO TO ME	as prints Fi	LOW AT INL	RT
OF UPPER	CULURAT -	USED NEW L	XATEN IN D	ISCH. CALCU	14Jon
Control Feature/Co	ndition: CULVER	75	-		
Weather: STRA	DY PAIN				* ***
Notes (e.g. equipme	ent problems, flow l	olockages, unusual s	stream conditions, e	tc.):AT GAGE	GB NEARRY
LOWER CU	WRAG PEPT	H: Z.O FT	UPPER CUCUTA	D:1.01	0.70 FT
	VILLO	2:2.42 FPS		V 21.88	5.60 FPS
		-		/	
Measurement Data		RB Distance (ft):		LB Distance (ft):	ALL IN THE A
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1			19		
2		1	20		
3			21		· · · · · · · · · · · · · · · · · · ·
4			22		
5	1.		23		
6			24	· · · · ·	
7			25		
8			26		
9	~		27		
Time / SG:			Time / SG:		
10			28		-
11		1	29		· · · · · ·
12			30	1850	
13			31		
14		. 1	32		
15			33		3
16			34		
17			35		
18		E	36		
Time / SG:	·	<u>1</u>	Time / SG:		8
Flow (cfs): 7 70	1 + 110 -	17 20	Entered into Balling	er Creek Database?	V
+.+	1+2.77=	15.28	Date: 12/21/	17- Initials:	AS

	Herrera -	Ballinger Creek	- Stream Flow	Data Sheet	
Flow Station #: BC-Y Gauge Start Height:		t: しきつ Stream: Ballinger Creek			
Date: 12/19	17-	Start Time: O	1940	Client: City of Shor	eline
Observer Initials:	AS	Gauge End Height:	1.67	Method: (Wading	Culvert
Berley Hold		End Time: (0)	25		
Gauging Assessme Excellent (2%*)	Good (5%*)	*(within _% deviat Fair (8%*)	ion from actual disc Poor (10%*)	harge)	
- MODERAT	E TURRULENCE TURRULENC TURBID FLOW	id gauge, lots of ma と AQCUND GA	erial in water, etc. BE Spanovice	LEAVES BU	icst UP
Cross Section Loca	tion:				
Sketch of XS Locat	ion:		ŧ.		
Control Feature/C	ondition: STREA	MBANKE /	2K		
Weather: STU	207 PAIN				
		n		·	
Measurement Dat	a	RB Distance (ft):	0.5	LB Distance (ft):	18.0
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.5	6	0	19 9.5	0.75	0
2 1.0	1.50	1.09	20 /0	0.40	0
3 1.2	1.55	1.23	21 //	0.35	С
4 2 4	1.65	1,27	22 17	0.30	0
5 75	155	1.55	23 12	0.40	0.01
6 30	150	1.50	24 14	0. (0	000
7 35	145	1-36	25 15	0.40	∂
8 4.0	145	1.20	26 //-	040	0.07
9 4.5	150	122	27 17	0.25	0
Time / SG:		1	Time / SG:		
10 5	1.70	1.30	28 /8	0	C
11 55	120	1.10	29		
12 6	194	1.14	30		
13 (5	7.40	0.76	31		
14 7	01-	0.97	32		
15 27	0.5	0.57	33		
16 8	0.50	0 CS	34		
17 01	0.00	aul	25		
10 9	A FA		26		
10 (Time / SG: 70 C	112	0.07	JJO Time / SC:		
Flam (cfa)	00/1.70		Februard SG:	L. Creak Database	
FIOW (CTS):	11.9			ger Creek Databaser (] I nitials:	As

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: R	C-1	Gauge Start Height	: 2.50	Stream: Ballinger Creek		
Date: 12/19/1	7	Start Time: 1001	0	Client: City of Shoreline		
Observer Initials:	AS	Gauge End Height:	2.52	Method: Wading	Culvert	
		End Time: (047	2			
Gauging Assessmen	t: Circle One	*(within _% deviati	ion from actual discl	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e.)	g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	: -		
Croce Section Locati	ion:	×				
Cross Section Location						
Sketch of AS Locatio						
Control Feature/Co	ndition: ZIAA	ABELOIL				
Weather: STEAL	DY RAIN					
Notes (e.g. equipme	ent problems, flow l	olockages, unusual s	tream conditions, e	tc.):	1	
CULVEST	BRETH: 0.8T	FT			- 19	
	VELC: 3.7	OFPS				
Measurement Data	1	RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1			19			
2			20		2	
3			21			
4			22		<u>a</u>	
5			23			
6			24			
7			25			
8			26	*		
9		· · · · · · · · · · · · · · · · · · ·	27			
Time / SG:			Time / SG: 🛛 🖂			
10			28			
11		1	29	24		
12		5 v	30			
13			31	C.		
14			32			
15	r		33			
16			34			
17			35		L1	
18			36			
Time / SG:			Time / SG:		,	
Flow (cfs):	5.45	ŝ.	Entered into Balling Date: 1221	er Creek Database?	A5	

	Herrera - I	Ballinger Creek	- Sti	ream Flow [Data Sheet	
Flow Station #: BC-2_ Gauge Start Height		: 5.64 Stream: Ballinger Creek			Creek	
Date: 12 19 1	7	Start Time:)	02		Client: City of Shoreline	
Observer Initials: AS Gauge End Height End Time: 1/2		5	50	Method: Wading	Culvert	
		End Time: 112	5	T.		
Gauging Assessmen	t: Circle One	*(within _% deviat	ion fr	om actual discl	narge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	F	oor (10%*)		
Flow Comments (e.	g. turbulence arour	nd gauge, lots of ma	terial	in water, etc.)		
Cross Section Locat	ion: ~ 6" Vest	REAMOFE	210	6E-		
Sketch of X5 Locatio	on:					
Control Feature/Co	ndition: STREAM	nBANKS 10	1	X 10		
Weather: STILL	PAINING, BU	T PAINFACE	INT	INS MY DA	opping off	
Notes (e.g. equipm	ent problems, flow l	olockages, unusual :	strear	n conditions, e	tc.):	1
						2.26
Measurement Data	<u> </u>	RB Distance (ft):	1.	0	LB Distance (ft):	14.0
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Ho	rizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 1.0	0	0	19	10	0.50	0.19
2 1.5	0.40	o.lc	20	105	0.25	0.75
3 2	0.60	1.21	21	-11	0.70	0.6(
4 Z.T	0.70	1.35	22	11.5	0.20	0.56
5 3	0.70	1.48	23	72	0.30	0.44
6 3.5	0.90	1.69	24	12.5	0.25	0.21
7 4	0.95	1.70	25	13	0.20	0.18
8 4.5	0.90	1.72	26	13.5	0.15	0.(1
9 5	0.90	1.71	27	14	0	Ò
Time / SG: //11	15.59		Tim	e / SG:	- 11 J	2
10 5.5	0.95	1.91	28	11 M	61	
11 6	0.95	2.17	29	2 2	100	
12 6.5	0.90	2.22	30	22 .	- Q	
13 7	0.80	1.91	31			
14 75	0.70	1.101	32		× - /	1
15 8	0.60	1.17	33		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 8.5	0.50	0.74	34	1.6		
17 9	0.40	13.0	35			
18 9.	0.35	0.90	36			
Time / SG: 118	15.55		Tim	e / SG:		10 10 0
Flow (cfs):			Ente	ered into Balling	er Creek Database	2
100 (013). [0	7.15		Date	12/21	11- Initials	AC
		and the second se	1-200		i i i i i i i i i i i i i i i i i i i	

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet				
Flow Station #: 13	30-3	Gauge Start Height	: 5-44	Stream: Ballinger C	ireek			
Date: 12/19/1	7	Start Time: 1(C	12	Client: City of Shoreline				
Observer Initials:	45	Gauge End Height:	542	Method: Wading	/ Culvert			
		End Time: 1143	147					
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual disc	narge)				
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)					
Flow Comments (e.	.g. turbulence arour	nd gauge, lots of ma	iterial in water, etc.)	: =				
Cross Section Locat	tion: CUI VER	75	140	-				
Sketch of XS Locatio				· · · · ·				
	0,11							
			1 a 2					
Control Feature/Co		ets/orc						
Weather: LIGH	T RAIN, GU	15-4			· · · · · · · · · · · · · · · · · · ·			
Notes (e.g. equipm	ent problems, flow l	blockages, unusual s	stream conditions, e	tc.):				
LOWER D:	1.70 -+	UPPIA 1	D: O. YO FT	MEASURI	~ Q			
CUVERT V.	3.19 FPS	CULVAR	J: 4.627P	NEARBY (CB			
		(لي ⁻				
Measurement Data		RB Distance (ft):		LB Distance (ft):				
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)			
1		1.5	19					
2			20					
3			21					
4	1		22		~			
5		<i>1</i> 0;	23					
6			24					
7			25					
8			26					
9			27					
Time / SG:		<u> </u>	Time / SG:					
10			78					
11			29					
12	2		30					
13			31					
14			37					
15			22	T. I.				
15			24					
10			254					
1/			35					
18			30					
nme / SG:			Time / SG:		/			
Flow (cfs): 9	83+2.07	= 119	Entered into Balling	er Creek Database?	-			
۲.		1 1 2 L	Date: 22111	F Initials:	AL .			

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: B	C-4	Gauge Start Height	t: 1.47	Stream: Ballinger C	reek
Date: 12 19 1	7	Start Time: 1150		Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height: 1.40		Method: Wading	/ Culvert
		End Time:	1216		
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual discl	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		
Flow Comments (e.	g. turbulence aroui	nd gauge, lots of ma	aterial in water, etc.)	:	
Cross Section Locat	ion:				
Sketch of AS Locatio	511:				*7
Control Feature/Co	ndition:				
Weather: 200	NSTOPPE	DEGUSTY	iccoutra	npus	55
Notes (e.g. equipm	ent problems, flow	blockages, unusual :	stream conditions, e	tc.):	
	·				
10 Y 10 Y					
Measurement Data		RB Distance (ft):	0.5	LB Distance (ft):	/0.0
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 0.5	0	0	19 9.5	0.10	C
2 1	0.75	0.38	20 - 10	C	0
3 1.5	1.3C	0.92	21		
4 2	1.25	1.13	22		
5 2.	1.20	1.41	23		
6 3	1.15	1.56	24		
7 3.5	1.10	1.55	25		
8 4	1.15	1.32	26		
9 4.5	1.15	(.1)	27		
Time / SG: 120	8/1.44		Time / SG:		- 5
10 5	1.25	1.10951	28		
11 5.5	1.70	0.20	29	1- C-	(*************************************
12 6	0.80	0.20	30		
13 6.5	0.55	0.06	31		
14 7	0.45	0.52	32		
15 75	6.40	0.33	33		
16 8	0.30	0.24	34		
17 85	6.30	0.01	35		0 I
18 9	0-7.0	2	36		
Time / SG:			Time / SG:		
Flow (cfs):	1		Entered into Balling	rer Creek Database?	/
	.15		Date: 12-11-1	1 Initiale	AC
			10010 101 M	J IIIIIais.	

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #:	C-1	Gauge Start Height	: Z.74	Stream: Ballinger C	reek
Date: 1/11/18	>	Start Time: 09	00	Client: City of Shoreline	
Observer Initials:	AS	Gauge End Height:	2.74	Method: Wading (Culvert)	
		End Time: 090	-2		
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual disc	harge)	
Excellent (2%*)	Good (5%*)) Fair (8%*)	Poor (10%*)	<u> </u>	
Flow Comments (e. $- \iota \circ TS CF T$	g. turbulence arour からいしたいへん	And gauge, lots of ma	Iterial in water, etc.) KUCAC, FCMS	very mu	+, TURBID
Cross Section Locat	ion: BIADCAL	L CULVERT O	WTCET		
Sketch of XS Locatio	on:	<i>a</i>			
			<i>2</i>		
		,			
Control Feature/Co	ndition: BIRDCA	GE/QC	12		
Weather: SteAr	M RAIN,~	43°F			
Notes (e.g. equipm	ent problems, flow l	olockages, unusual s	stream conditions, e	tc.):	
CULVER	T DEPTH	1.05			
	JELC:	4.49			
Measurement Data	1	RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1		· · · · · · · · · · · · · · · · · · ·	19		
2			20		
3			21		
4			22	-	
5			23	1424 	-
6			24		
7			25		
8			26		
9			27		
- Time / SG:			Time / SG:	I	
10			28		
11			29		-
12			30		
13			31		
14			37	· · · · · · · · · · · · · · · · · · ·	
15		<u></u>	33		
16			34		
17			35		
18			36	· · · · · · · · · · · · · · · · · · ·	
Time / SG·			Time / SG		
Flow lafely	2.0		Conternal into Delling	or Crock Database 2	5
	18		Date: 1/11/16	initials:	AS

	Herrera - I	Ballinger Creek	- Str	eam Flow I	Data Sheet	T
Flow Station #: BC - Z Gauge Start Height:		: 5.	67	7 Stream: Ballinger Creek		
Date: 1/11/12		Start Time: 09	115		Client: City of Shoreline	
Observer initials:	AS	Gauge End Height:	5.5	6	Method Wading) Culvert
		End Time: つう	40			
Gauging Assessmer	it: Circle One	*(within_% deviat	ion fro	m actual disc	narge)	
Excellent (2%*)	Good (5%*)	(Fair (8%*)		oor (10%*)		
Flow Comments (e. Lots of TUR	g. turbulence arour EULENCE AMO	MO GAGE		in water, etc.) レペパィロイ	- RCEVATE	stan
Cross Section Locat	ion: IMMED (AT	TOUT UPSTRI	AM	OF PEDE	STRIAN BALI	36E
Sketch of XS Locatio	on:	2014-0		× 1		
					_	
Control Feature/Co	ndition: STREA	UBANKS 10				
Weather: STRA	oy rain, ~	42°F '				
Notes (e.g. equipm	ent problems, flow t	olockages, unusual s	stream	i conditions, e	tc.):	
Measurement Data		RB Distance (ft)-	13		LB Distance (ft):	14.2
Horizon, Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Hori	zon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 3	()		19	10.3	0.3	0.44
2 19	635	0	20	10.8	0.3	0.86
3 7 7	0.6	1.2.5	21	11.2	0.3	081
4 2 9	0.8	1.10	22	11 8	03	().72
5 2 2	09	170	23	17 3	() 3	C SC
<u> </u>	11	1.51	24	17 8	07	0.30
7 4 7	C.95	1.62	25	13.2	0.2	0
8 49	10	119	26	13 %	01	0
9 6 7	10	1 99	27	142	C	0
Time / SG: 097	51515		Time	/ SG:		
10 59	100	77.4	28	,		
11 / 2	1.0	257	29			
12 6 9	0.95	279	30			
13 77	0.0	1 411	31			
14 7C	07	150	32			
15 GZ	0.57	1.10	32			
16 9 9	0	110	34	-		8
17 91	au	19/	35			
19 9 6	() 75	0.55	35			
Time / SC. 0976	1/6 60		Time	156.		
	17.00		rinne E = t =	/ JU.	I Crock Databas-7	7
	0.95		Date		ser creek Database? Initials:	AS

	Herrera - I	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: 13	3c - 3	Gauge Start Height	: 5.50	Stream: Ballinger C	reek	
Date: 1/11/18		Start Time: 1007		Client: City of Shore	eline	
Observer Initials: 🖗	5	Gauge End Height: 0.52		Method: Wading / Culvert		
		End Time: [O]	2			
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disc	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e.	g. turbutence arour	id gauge, lots of ma	terial in water, etc.)	FLAN		
			-, , , , , , , , , , , , , , , , , , ,			
Cross Section Locat	ion: CUVER	TT Q 25TH	AUG NE			
Sketch of XS Locatio		15 000	AURIAL			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Control Feature/Co	ndition: LILVE	LATS / CIK				
Weather: HEAVY	RAIN, 42F					
Notes (e.g. equipme	ent problems, flow l	olockages, unusual s	tream conditions, e	tc.):		
WPPER CULVE	DETA: 0.	45 Gower	ULVERT DRATH	- 2.0		
	VILLC: 4.1	60	VECC.	2.35		
			-			
Measurement Data		RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1			19			
2			20			
3			21		<u> </u>	
4	- C		22			
5			23			
6			24			
7	-		25			
8			26			
9			27			
Time / SG:			Time / SG:			
10			28			
11			29			
12			30			
13			31			
14			32			
15			33			
16			34			
17			35			
18	65		36			
Time / SG:			Time / SG:		4	
Flow (cfs)	Carl	0 61	Entered into Balling	ger Creek Database?	Y	
+ 7	1 2.513	-7.01	Date: 1/11/18	Initials:	AC	

ŝ,

	Herrera -	Bailinger Creek	- Stream Flow	Jata Sheet		
Flow Station #: K	/A	Gauge Start Height	: WA	Stream: Ballinger Creek		
Date: 1/11/12	Start Time: [O			Client: City of Shor	eline	
Observer Initials: A Gauge End Height:			NA	Method: Wading	Culvert	
		End Time: 103	0			
Gauging Assessmer	it: Circle One	*(within _% deviat	ion from actual disc	harge)		
Excellent (2%*)	<u> </u>	Fair (8%*)	Poor (10%*)			
- FLOW ELEV	ATRO TUN		iteriar in water, etc.)	ి		
Cross Section Locat	ion: CULVERT	OUTLET ON				
Sketch of XS Locatio	n:			8		
Control Feature/Co	ndition: CULVE	RT / CULVERT	OVTLET APPEAR	S MODIFIED (10.	WISTA > HEIGH	
Weather: STRA	DU RAIN	•			22 T	
Notes (e.g. equipm	ent problems, flow J	olockages, unusual s	stream conditions, e	tc.):	2	
CULVER	TOUTLET	3. OFT DIAM	arryno long	en circula	L)	
	17-6	14165				
1	Vh	LC: 1.70				
Measurement Data		RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1			19			
2	-449		20		•	
3	t de la constante de la consta		21			
4	- · -	200	22			
5		1	23			
6	<u>,6</u>		24			
7	17.60		25			
8			26			
9	-	10 A 5	27	1		
Time / SG:	10	St.	Time / SG:		<u> </u>	
10			28	and i		
11			29		6	
12	3		30		6	
13			31			
14	ся		32	1		
15 i			33	h i E	.er 16.	
16		5 C	34		• 8 ₀ -	
17			35		1.0.0	
18	(*).		36	-		
Time / SG:			Time / SG:			
Flow (cfs):	10.8		Entered into Balling Date: () (() ()	ger Creek Database? Initials:	XZ AZ	

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: B	r-4	Gauge Start Heigh	t: 1-64	Stream: Ballinger C	reek	
Date: 1/11/18		Start Time: 10	40	Client: City of Shoreline		
Observer Initials:	x8	Gauge End Height:	1.62	Method Wading	UCulvert	
		End Time: 1/0	2			
Gauging Assessmer	nt: Circle One	*(within _% deviat	ion from actual disc	harge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
- MINCR A	g. turbulence arour	CRSULRNC	E AMEUND (SACE	λ.	
Cross Section Locat	ion: DOWNSTRG	m of cage (@ PREVIOUSLY	USED LOCAT	ica)	
Sketch of XS Locatio	on:		5			
á.						
Control Feature/Co	ndition: STREA	M BANKS /				
Weather: STRAS	M PAIN	alaataa		An 1.		
Notes (e.g. equipm	ent problems, flow l	Diockages, unusual	Stream conditions, e	IC.):		
- JOWE CI	Corro Corro		more, part			
Measurement Data		RB Distance (ft):	04	LB Distance (ft): 178		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec	
1 0.4	0	0	19 7.6	D.46	0.60	
2 (19:	13	0.4	20 8.0	040	0.36	
3 (2	1.5	0.98	21 9 0	040	-0.10	
4 1.6	15	1.49	22 10.	03	C	
5 7.0	1.55	1.519	23 ((0.3	0.02	
6 7.4	1.5	1.67	24 17	0.7	C	
7 7.8	1.45	1.71	25 13	0.25	0	
8 3.7	1.35	156	26 (4	0.3	0	
9 32	1.35	1.52	27 15	0.4	0	
Time / SG:			Time / SG:			
10 4.6	1.3	1.44	28 /6	0.3	0	
11 4.4	1.35	.1.56	29 17	0.1	0	
12 4.8	1.40	1.53	30 12.8	G	Ċ	
13 5.2	1 4-19	1.(31			
14 56	1.40	0.95	32			
15 (a G	0.75	. 0.95	33			
16 6 4	0.65	0.96	34			
17 6 %	0.105	0.96	35			
18 7 7	0.40	0.97	36	_		
<u> レ</u> Time / SG: しっちり	165		Time / SG:			
Flow (cfs):	200	1	Entered into Balling	rer Creek Database?	4	
	2.96		Date: 1/1/14	Initiale	AT	
10	. 16		Date: 1/(1/18	Initials:	AT	

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #:	Station #: 12 - 1 Gauge Start Height:			Stream: Ballinger C	reek
Date: 1/11/18		Start Time: 1152		Client: City of Shoreline	
Observer Initials: 15 Gauge End Height:			2.81	Method: Wading	/Culvert
		End Time: 115	Ч:		
Gauging Assessmen	it: Circle One	*(within _% deviat	ion from actual discl	narge)	
Excellent (2%*)	Good (5%*))	Fair (8%*)	Poor (10%*)		
Flow Comments (e. —HIGH Ft	g. turbulence arour	, LOTS OF	TURBUEN	ck Around (SAUE
Cross Section Locat	ion: CULVERT	OUTLET	1 1 SF		
Sketch of XS Locatio	on:				
		4			
2 - C 24		101		4	
Control Feature/Co	ndition: BIRDC	AGE/OUL			
Weather: STRAL	Y RAIN	1			
Notes (e.g. equipmo	$= \left(\begin{array}{c} \nabla \mathcal{R} & \mathcal{C} \\ \nabla \mathcal{R} & \mathcal{C} \\ \nabla \mathcal{R} & \mathcal{C} \end{array} \right) $	1.25 1.15	Stream conditions, e -VSED STAIL ILER TO RE STILLING WE	tc.): NLESS STREM MOVE SANS CL -WORLE	CWEEL
Measurement Data		RB Distance (ft):		LB Distance (ft):	
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec
1	1 -		19		
2			20		
3	10 11		21		
4			22		Ĺ
5			23		
6			24		
7			25		
8			26		
9			27		
Time / SG:			Time / SG:		
10			28		
11			29		
12			30		
13			31	2	
14			32		
15			33		
16			34		
17			35		
18			36		
Time / SG:			Time / SG:		
Flow (cfs):	9.37		Entered into Balling	ger Creek Database?	e f

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet	
Flow Station #: BC - Z Gauge Start Hei		Gauge Start Height	t: 5.95 Stream: Ballinger Creek		reek
Date: 1/11/18 St		Start Time: 12.05		Client: City of Shore	eline
Observer Initials:	AS	Gauge End Height:	5.72	Method: Wading	Culvert
		End Time: 12	28		
Gauging Assessme	ent: Circle One	*(within _% deviat	ion from actual disc	harge)	
Excellent (2%*)	(Good (5%*)	Fair (8%*)	Poor (10%*)		
FLOW Comments (e	e.g. turbulence arour	nd gauge, lots of ma	terial in water, etc.)	:	
Cross Section Loca	ition: IMIN FIDIAT	ELY LASTRE.	AM OF PES	BRIDGE	
Sketch of XS Locat	ion:				
Control Feature/C	ondition: STREAM	ABONKS + BI	NOURIAL		
Weather: STRA	PY RAIN, HE	AUY AT TON	JEG I		
Notes (e.g. equipn	nent problems, flow I	olockages, unusual s	stream conditions, e	tc.):	
			1.0	L.D. Distance (ft)	1/7
Veasurement Dat	a	KB Distance (IT):	(, O	LB Distance (IT): 79	Volosity (ft/sec)
Horizon. Dist. (it)	vvater Depth (it)		Horizon, Dist. (It)		Velocity (It/sec)
1 1.0		V	19 (0	0.25	1.02
2 7.7	0.9	0.15	20 (0.5	0.55	1.07
3 2.0	. U.J.S	1.15		0.90	0.9
+ <u><u><u></u></u></u>	195	145	22	0.00	0.13
5 3.0	0.75	1.7	23 12	0.70	0.01
<u> </u>	1.05	1.77	24 2.5	0.40	0.27
1 4.	1	1.76	25 (5	0.30	0.10
<u>s 4.5</u>	1.05	2.05	26 13.5	0.20	0.10
9 5		6.15	21 19	0.1	C
lime/SG: 121	4/5.74	0 57	Time / SG:		
10 5.5	1.1	2.55	28 19.5	<i>C</i>	0
11 6	1.05	1.70	29		
12 (6.)		6.JT	30		
13 +	5.0	1.75	31		
14 4.5	0.75	1.00	32		
15 °E	0.65	1.22	33		
16 8.5	0.55	0.46	34		
17 ?	0.50	0.48	35		
18 9.5	0.40	1.08	36		
Time/SG: 1222	15.73		Time / SG:		
Flow (cfs):	3.3		Entered into Balling	ger Creek Database? Initials:	¥

Flow Station #: 3C-3 Gauge Start He		Gauge Start Height	: 5 20	Stream: Ballinger C	reek	
Date: 1/11/18		Start Time: 12	42	Client: City of Shoreline		
Observer Initials: A	5	Gauge End Height:	5.89	Method: Wading	/Culvert	
		End Time: 124	-16			
Gauging Assessment	t: Circle One	*(within _% deviat	ion from actual disch	narge)		
Excellent (2%*)	(Good (5%*))	Fair (8%*)	Poor (10%*)			
Flow Comments (e.g - LOTS OF T	g. turbulence aroun	E AROUND C	CAVIDE 1 Fro	ws H16++-	TURBID	
Cross Section Locati	on:					
Sketch of XS Locatio	n:			and the second sec		
				12		
Control Feature/Cor	dition: CULVE	PTS /OK				
Weather: HEAVY	PAIN, TRAVE	SCTLONEND T	O STRADY 1	WTIN, THENS	TOPPING	
Notes (e.g. equipme	(2) Cred City	Diockages, unusual s	NENT CUTLET (EAST OF 25TH	WE NE @ (25	
DEPTH 7	DEF	TH 0.55	DEPTH II	20	2	
VELC 3.47	2 VELO	- 5.45	VRIC 3.	00 1	3.3 CFS	
Measurement Data		RB Distance (ft):	I B Distance (ft):			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/se	
1		, , , , , , , , , , , , , , , , , , , ,	19		2	
2			20			
3			21		100	
4			22			
5		7	23			
6			24		•	
7			25			
8	2		26		200 - 1914 	
9			27	-		
Time / SG:			Time / SG:			
10			28			
11	,		29			
12	···· ·		30			
13			31			
14			32			
15			33	2		
16	6		34			
- V .			35			
17		1				
17			36			
17 18 Time / SG:			36 Time / SG:			

· 782	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet			
Flow Station #: BC-1		Gauge Start Height	: 2.54	Stream: Ballinger C	reek		
Date: 1/23/18		Start Time: 0938		Client: City of Shoreline			
Observer Initials:	47	Gauge End Height:	2.05	Method: Wading (/ Culvert>		
		End Time: 09	140				
Gauging Assessmer	nt: Circle-One	*(within _% deviati	ion from actual discl	narge)			
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)				
Flow Comments (e.	g. turbulence arour TURBULENCE, 420, DOMINIC	Id gauge, lots of ma CHECKIN S	terial in water, etc.)	-HAS NOT	FILLED		
Cross Costion Loopt	inne esti stera	OUTURE	LI A LEATA				
Cross Section Local		OVIDER			<u>.</u>		
SKEICH OF AS LOCALI	511.						
Control Feature/Co	ndition: 12/2 CP	GE /OK	- 0	10 0 - 010			
weather: LiGHT	HAN UST	TRAIN INTENS	177 FICKERGO	Vr CC94C			
Notes (e.g. equipm	ent problems, flow I	blockages, unusual s	stream conditions, e	(C.):			
CULVING DI	KTH: 0. 50 FT						
WILL V	RLC: T. OUFA.	5			280		
Measurement Data	1	RB Distance (ft):		LB Distance (ft):			
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)		
1			19				
2			20				
3			21				
4			22				
5			23				
6 <			24				
7			25				
8			26				
9			27				
Time / SG:	1		Time / SG:				
10			28	1.0			
11			29				
++ 17		_	30		·		
12			31				
14			32				
15			22				
15		· · · · ·	24				
17			25				
1/			22				
18			JO Time / SG:				
				Creation - Creation -			
Flow (cfs): 0.37			Entered into Ballinger Creek Database? Y				
0.25		Date: 1 23 18	> Initials:	AS			

BallingerCkStreamFlowDataSheet.xls>	<

-

	Herrera -	Ballinger Creek	- Stream Flow	Data Sheet	
Flow Station #: BC-2		Gauge Start Height	: 5.25	Stream: Ballinger C	reek
Date: 1/23/18		Start Time: 10	00	Client: City of Shore	eline
Observer Initials: A	5	Gauge End Height:	5.34	Method: Wading	Culvert
		End Time: 101	8		
Gauging Assessmen	t: Circle One	*(within _% deviat	ion from actual disc	harge)	
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)		<u> </u>
Flow Comments (e.)	g. turbulence arour REVEREAL CASIAL From	IT MBIDE	CAERIC FAIL	ANUM FLOR	START.
Cross Section Locat	ion: IMMEDIAN	- CUY VPSTR	kam of the	ESTRIAN B	RIDIF
Sketch of XS Locatio	on:				
8. N (2.	e e				2
Control Feature/Con	ndition: STR. CAN	MBANICS /c			
Weather: LIGHT	TO MODERA	TE MAIN, "	14°F		
Notes (e.g. equipme	ent problems, flow b	olockages, unusual	stream conditions, e	tc.):	Day Fre
- DOWNLOA	HOGO PATA	- FID.L. AF	THE COLLES	The R.C.C	5. 1ºCIN75
AT EACH	STATION -	DATA SET	Comple	TIC	
Measurement Data		RB Distance (ft):	1.5	LB Distance (ft):	13
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)
1 \$.5	0	6	19 10.5	0.15	0.0%
2 7	0.25	0.42	20 (/	0.15	0.35
3 P.S	0.45	0.81	21 11.5	0.2	0.11
4 2	2.55	0,90	22 12	0.2	0.08
5 3.5	0.70	0.81	23 12.5	0.15	0.04
6 <i>b</i>	0.70	0,88	24 13.2	C	0
7 5	0.70	0.99	25		
8 4	0.75	0.96	26		
9 9.5	0.75	1.07	27		
Time / SG: 1009	15.29	1.14	Time / SG:		
10 6	0,7	1.15	28	1	-
11 6.5	0.6	(.03	29		
12 7	0.6	0.98	30	-	
13 75	0.5	9.94	31		
14 8	0.4	0.73	32		
15 8.5	0-3	0.54	33		
16 9	1.25	0.58	34		
17 95	0.2	0.44	35		
18 /0	BL	015	36		
Time / SG: / Auto-	530		Time / SG:		
Flow (cfs):	3.83		Entered into Ballin	ger Creek Database?	Ac

	Herrera -	Ballinger Creek	- Stream Flow I	Data Sheet		
Flow Station #: BC-3		Gauge Start Height: 5.19		Stream: Ballinger C	reek	
Date: 1/23/18		Start Time: 10	35	Client: City of Shoreline		
Observer Initials: AS Gauge End Height: End Time: 104			t: 5.15 Method: Wading Culvert			
			A.S			
Gauging Assessmer	it: Circle One	*(within _% deviat	ion from actual disc	harge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Poor (10%*)			
Flow Comments (e. - MINIMAL BAROTROL	g. turbulence arour TRB. Aroun C-DATA	nd gauge, lots of ma NO EAVLE SET COM	Down LOADS CREE	D DATA F	1 D.L. +	
Cross Section Locat	ion: SAME AS	PREVIOUS MA	ASURAMENA	5		
Sketch of XS Locatio	on:					
Control Feature/Co	ndition: CULVE	LAS/MC				
Weather: UIG A	T Rton					
-Lower D CULVERT	EPTH 1.55 PT IECC 1.11 FP	VPALA S CUVAT	D: 0.25 FT V: 3.48 FP	् ् र		
Measurement Data		RB Distance (ft):		LB Distance (ft):		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
1			19			
2	2-1		20		2	
3		0	21			
4			22 5			
5			23			
6			24			
7			25			
8		а. С	26			
9			27			
Time / SG:			Time / SG:			
10			28			
11			29			
12			30	5. cm		
13			31			
14			32			
15			33			
16			34			
17			35		······	
18			36	3		
Time / SG:			Time / SG:			
Flow (cfs): 2-	92+1.31=	- 4.23	Entered into Balling Date: $1/23/18$	ger Creek Database? Initials:	Y AS	

	Herrera -	Ballinger Creek	- Stre	am Flow I	Data Sheet		
Flow Station #: BC-4		Gauge Start Height: 1.05			Stream: Ballinger C	reek	
Date: 1/23/18		Start Time: 1046			Client: City of Shoreline		
Observer Initials:	15	Gauge End Height:	0.9	8	Method Wading	Culvert	
26		End Time: //4	3				
Gauging Assessmen	t: Circle One	*(within _% deviat	ion fror	n actual disc	narge)		
Excellent (2%*)	Good (5%*)	Fair (8%*)	Po	or (10%*)			
-MINIMAL CAUGUT ON	g. turbulence arour TURBUEN) STAFF G	id gauge, lots of ma ice Arcone		BR, P	enoved A F	FW LEAVES	
Cross Section Locat	ion: SAME AS	PREVIOUS N	NJ-AC	suren	CNTS .		
Sketch of XS Locatio	on:	1 A A					
		2e 1					
Control Feature/Co	ndition:						
Neather: LIGHT	TO MODERA	TE RAIN					
Notes (e.g. equipmo	ent problems, flow b	plockages, unusual s	stream	conditions, e	tc.):		
-NOTHING	NUSUAL C	ACAT	100	NNLOW		τ. τ. (
DATIFLOG		75107 00					
Measurement Data		RB Distance (ft):	0.4		IB Distance (ft): 65		
Horizon. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	Horiz	on. Dist. (ft)	Water Depth (ft)	Velocity (ft/sec)	
0.4	0	0	19	58	0.75	0.11	
07	08	0.35	20	1.1	0.05	0	
3	0.8	0.63	21	6-5	Ö	0	
4 13	0.9	0.76	22				
6.6	6.9	082	23				
5 19	0.9	0.83	24		-	1	
22	0.85	0.81	25				
3 25	0.8	6.86	26				
2.8	025	0.82	27			1	
Fime / SG:			Time /	SG:			
0 2	07	1.62	28				
1 2.4	0.7	0.86	29		1.1.1.2.42.0		
12 71	0.65	1.02	30		<i>6</i>		
13 U	0.65	1.25	31				
4 47	0.1.5	1.49	32				
	0_65	1.45	33				
16 U G	01	1.26	34			4	
17 5.1	A CT	0.91	35	1			
18 T.C	A 7	1 11	36	17			
Fime / SG:	0.1		Time /	SG:			
Flow (cfs):	3.29		Entere	d into Balling	ger Creek Database?	4 As	

APPENDIX C

Rating Curve Results and Individual Storm Event Analysis

The contents of this appendix are provided in electronic format transmitted to the City of Shoreline under separate cover. A sample of the gaging results is provided on the following pages and includes the full record of discharge results as well as the results for the two most significant events. These include:

- Discharge (cfs) at the four stations (December 2016 January 2018)
- Discharge (cfs) summary for the October 20, 2017 storm event
- Discharge (cfs) summary for the January 18, 2017 storm event

10/20/1	7 12:00
-, = -, =	

